Research Article
BibTex RIS Cite

Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique

Year 2020, Volume: 8 Issue: 3, 1794 - 1801, 31.07.2020
https://doi.org/10.29130/dubited.668626

Abstract

The amount of arsenic (As) in the earth increases every day and adversely affects the life of all living beings, including human health. Therefore, studies on the development of As determination methods are gradually gaining importance. The foundation of the Diffusive Gradients in Thin Film (DGT) technique addressed in this study is based on the diffusion process. The analyte to be determined passes through different layers in the DGT unit and reaches the adsorber gel layer. In the study presented, the gel obtained from iron (III) oxide (Fe2O3) was used as the adsorber layer. The use of the DGT technique in the amount determination of As(III) and As(V) species in the aqueous medium was examined and all the measurements performed during the experimental studies were observed to be made with an ICP-MS device. Different parameters were evaluated in terms of different pH values, ionic strength effects, gel layer thickness and the effects of the eluent materials and the most suitable working conditions were determined.

References

  • [1] L. Zeng, C. Yan, J. Guo, Z. Zhen, Y. Zhao and D. Wang, “Influence of algal blooms decay on arsenic dynamics at the sediment water interface of a Shallow Lake,” Chemosphere, vol. 219, pp. 1014-1023, 2019.
  • [2] S. Fendorf, H.A. Michael and A. Van Geen, “Spatial and temporal variations of groundwater arsenic in South and Southeast Asia,” Science, vol. 328, pp. 1123-1127, 2010.
  • [3] E. Sabath, “Arsenic, kidney and urinary bladder disorders,” in Handbook of Arsenic Toxicology, India: Elsevier, 2015, pp. 429-442.
  • [4] W. Burgess, M. Hoque, H. Michael, C. Voss, G. Breit and K. Ahmed, “Vulnerability of deep ground water in the Bengal Aquifer System to contamination by arsenic,” Nat Geosci, vol. 3, no. 2, pp. 83-87, 2010.
  • [5] J. Gorny, G. Billon, L. Lesven, D. Dumoulin, B. Madé and C. Noiriel, “Arsenic behavior in river sediments under redox gradient: A review,” Science of the Total Environment, vol. 505, pp. 423-434, 2015.
  • [6] Q. Sun, S. Ding, M. Chen, S. Gao, G. Lu, Y. Wu, M. Gong, D. Wang, Y. Wang, “Long-term effectiveness of sediment dredging on controlling the contamination of arsenic, selenium and antimony,” Environmental Pollution, vol. 245, pp. 725-734, 2019.
  • [7] K.M. McCarty, H.T. Hanh and K.W. Kim, “Arsenic geochemistry and human health in South East Asia,” Rev. Environ. Health, vol. 26, pp. 71-78, 2011.
  • [8] C.M. Santelli, S.A. Welch, H.R. Westrich and J.F. Banfield, “The effect of Fe-oxidizing bacteria on fesilicate mineral dissolution,” Chem Geol, vol. 180, no. 1, pp. 99-115, 2001.
  • [9] S. Dixit and J.G. Hering, “Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility,” Environ. Sci. Technol., vol. 37, pp. 4182–4189, 2003.
  • [10] C.K. Jain and I. Ali, “Arsenic: Occurrence, toxicity and speciation techniques,” Water Res., vol. 34, pp. 4304–4312, 2000.
  • [11] J. Gornya, G. Billona, C. Noiriel, D. Dumoulina, L. Lesvena and B. Madéc, “Redox behaviour of arsenic in the surface sediments of the Marque River (Northern France),” Journal of Geochemical Exploration, vol. 188, pp. 111–122, 2018.
  • [12] J. Gorny, G. Billon, L. Lesven, D. Dumoulin, B. Madé and C. Noiriel, “Arsenic behavior in river sediments under redox gradient: Review,” Sci. Total Environ., vol. 505, pp. 423–434, 2015.
  • [13] J. Gorny, D. Dumoulin, L. Lesven, C. Noiriel, B. Madé and G. Billon, “Development and application of a HPIC-ICP-MS method for the redox arsenic speciation in river sediment pore waters,” J. Anal. At. Spectrom., vol. 30, pp. 1562–1570, 2015.
  • [14] J. Gorny, L. Lesven, G. Billon, D. Dumoulin, C. Noiriel, C. Pirovano, “Determination of total arsenic using a novel Zn-Ferrite binding gel for DGT techniques: Application to the redox speciation of arsenic in river sediments,” Talanta, vol. 144, pp. 890–898, 2015.
  • [15] L.W. Liu, H. Deng, L. Wu, C.B. Zheng and X.D. Hou, “UV-Induced carbonyl generation with formic acid for sensitive determination of nickel by Atomic Fluorescence Spectrometry,” Talanta, vol. 80, pp. 1239-1244, 2010.
  • [16] J. Luo, H. Zhang, J. Santner, W. Davison, “Performance characteristics of Diffusive Gradients in Thin Films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V) and antimony(V),” Anal. Chem., vol. 82, pp. 8903-8909, 2010.
  • [17] H. El Khalil, O. El Hamiani, G. Bitton, N. Ouazzani and A. Boularbah, “Heavy metal contamination from mining sites in South Morocco: Monitoring metal content and toxicity of soil runoff and ground water,” Environ. Monit. Assess., vol. 136, pp. 147-160, 2008.
  • [18] X.X. Zhu, L. Xu, Y. Lou, H.N. Yu, X. Li, D.A. Blake and F.Q. Liu, “Preparation of specific monoclonal antibodies (MAbs) against heavy metals: MAbs that recognize chelated cadmium ions,” J. Agric. Food Chem., vol. 55, pp. 7648-7653, 2007.
  • [19] A.A. Gani, M.R. Ashari and B. Kuswandi, “An optical fiber biosensor for heavy metal ions based on a modified single sol-gel film of urease and chlorophenol red in flow system,” Sens. Lett., vol. 8, pp. 320-327, 2010.
  • [20] S. Zhang, P.N. Williams, C.Y. Zhou, L.Q. Ma, J. Luo, “Extending the functionality of the slurry ferrihydrite-DGT method: Performance evaluation for the measurement of vanadate, arsenate, antimonate and molybdate in water,” Chemosphere, vol. 184, pp. 812-819, 2017.
  • [21] H. Osterlund, S. Chlot, M. Faarinena, A. Widerlund, I. Rodushkin, J. Ingri and D.C. Baxtera, “Simultaneous measurements of As, Mo, Sb, V and W using a ferrihydrite Diffusive Gradients in Thin Films (DGT) device,” Analytica Chimica Acta, vol. 682, pp. 59–65, 2010.
  • [22] H. Zhang, W. Davison, R. Gadi and T. Kobayashi, “In situ measurement of dissolved phosphorus in natural waters using DGT,” Anal. Chim. Acta, vol. 370, pp. 29-38, 1998.
  • [23] J. Dong, H. Fan, D. Sui, L. Li, T. Sun, “Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer,” Analytica Chimica Acta, vol. 822, pp. 69–77, 2014.

Difüzyon Yöntemi (Diffusive Gradients in Thin Film; DGT) Kullanılarak Farklı Arsenik Türlerinin Adsorpsiyon Çalışmalarının Araştırılması

Year 2020, Volume: 8 Issue: 3, 1794 - 1801, 31.07.2020
https://doi.org/10.29130/dubited.668626

Abstract

Yeryüzünde bulunan arsenik (As) miktarı günden güne artış göstererek insan sağlığı da dahil olmak üzere tüm canlı hayatını olumsuz yönde etkilemektedir. Bu nedenle As tayin yöntemlerinin geliştirilmesine yönelik çalışmalar her geçen gün önem kazanarak artmaktadır. Bu çalışmada yer alan Diffusive Gradients in Thin Film (DGT) yönteminin temeli difüzyon işlemine dayanmaktadır. Tayin edilmek istenilen analit, DGT ünitesinin içerisinde bulunan farklı katmanlardan geçerek adsorplayıcı jel tabakasına ulaşmaktadır. Sunulan çalışmada adsorplayıcı tabaka olarak demir (III) oksit (Fe2O3)’den elde edilen jel kullanılmıştır. DGT yönteminin sulu ortamda As(III) ve As(V) türlerinin miktar tayininde kullanımı incelenmiş deneysel çalışmalar sırasında gerçekleştirilen tüm ölçüm işlemleri, ICP-MS cihazı ile gerçekleştirilmiştir. Farklı pH değerleri, farklı derişimde iyonik şiddet etkileri, jel tabakası kalınlığı ve kullanılan eluent maddelerin etkileri bakımından farklı parametreler değerlendirilmiş, en uygun çalışma koşulları belirlendi.

References

  • [1] L. Zeng, C. Yan, J. Guo, Z. Zhen, Y. Zhao and D. Wang, “Influence of algal blooms decay on arsenic dynamics at the sediment water interface of a Shallow Lake,” Chemosphere, vol. 219, pp. 1014-1023, 2019.
  • [2] S. Fendorf, H.A. Michael and A. Van Geen, “Spatial and temporal variations of groundwater arsenic in South and Southeast Asia,” Science, vol. 328, pp. 1123-1127, 2010.
  • [3] E. Sabath, “Arsenic, kidney and urinary bladder disorders,” in Handbook of Arsenic Toxicology, India: Elsevier, 2015, pp. 429-442.
  • [4] W. Burgess, M. Hoque, H. Michael, C. Voss, G. Breit and K. Ahmed, “Vulnerability of deep ground water in the Bengal Aquifer System to contamination by arsenic,” Nat Geosci, vol. 3, no. 2, pp. 83-87, 2010.
  • [5] J. Gorny, G. Billon, L. Lesven, D. Dumoulin, B. Madé and C. Noiriel, “Arsenic behavior in river sediments under redox gradient: A review,” Science of the Total Environment, vol. 505, pp. 423-434, 2015.
  • [6] Q. Sun, S. Ding, M. Chen, S. Gao, G. Lu, Y. Wu, M. Gong, D. Wang, Y. Wang, “Long-term effectiveness of sediment dredging on controlling the contamination of arsenic, selenium and antimony,” Environmental Pollution, vol. 245, pp. 725-734, 2019.
  • [7] K.M. McCarty, H.T. Hanh and K.W. Kim, “Arsenic geochemistry and human health in South East Asia,” Rev. Environ. Health, vol. 26, pp. 71-78, 2011.
  • [8] C.M. Santelli, S.A. Welch, H.R. Westrich and J.F. Banfield, “The effect of Fe-oxidizing bacteria on fesilicate mineral dissolution,” Chem Geol, vol. 180, no. 1, pp. 99-115, 2001.
  • [9] S. Dixit and J.G. Hering, “Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility,” Environ. Sci. Technol., vol. 37, pp. 4182–4189, 2003.
  • [10] C.K. Jain and I. Ali, “Arsenic: Occurrence, toxicity and speciation techniques,” Water Res., vol. 34, pp. 4304–4312, 2000.
  • [11] J. Gornya, G. Billona, C. Noiriel, D. Dumoulina, L. Lesvena and B. Madéc, “Redox behaviour of arsenic in the surface sediments of the Marque River (Northern France),” Journal of Geochemical Exploration, vol. 188, pp. 111–122, 2018.
  • [12] J. Gorny, G. Billon, L. Lesven, D. Dumoulin, B. Madé and C. Noiriel, “Arsenic behavior in river sediments under redox gradient: Review,” Sci. Total Environ., vol. 505, pp. 423–434, 2015.
  • [13] J. Gorny, D. Dumoulin, L. Lesven, C. Noiriel, B. Madé and G. Billon, “Development and application of a HPIC-ICP-MS method for the redox arsenic speciation in river sediment pore waters,” J. Anal. At. Spectrom., vol. 30, pp. 1562–1570, 2015.
  • [14] J. Gorny, L. Lesven, G. Billon, D. Dumoulin, C. Noiriel, C. Pirovano, “Determination of total arsenic using a novel Zn-Ferrite binding gel for DGT techniques: Application to the redox speciation of arsenic in river sediments,” Talanta, vol. 144, pp. 890–898, 2015.
  • [15] L.W. Liu, H. Deng, L. Wu, C.B. Zheng and X.D. Hou, “UV-Induced carbonyl generation with formic acid for sensitive determination of nickel by Atomic Fluorescence Spectrometry,” Talanta, vol. 80, pp. 1239-1244, 2010.
  • [16] J. Luo, H. Zhang, J. Santner, W. Davison, “Performance characteristics of Diffusive Gradients in Thin Films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V) and antimony(V),” Anal. Chem., vol. 82, pp. 8903-8909, 2010.
  • [17] H. El Khalil, O. El Hamiani, G. Bitton, N. Ouazzani and A. Boularbah, “Heavy metal contamination from mining sites in South Morocco: Monitoring metal content and toxicity of soil runoff and ground water,” Environ. Monit. Assess., vol. 136, pp. 147-160, 2008.
  • [18] X.X. Zhu, L. Xu, Y. Lou, H.N. Yu, X. Li, D.A. Blake and F.Q. Liu, “Preparation of specific monoclonal antibodies (MAbs) against heavy metals: MAbs that recognize chelated cadmium ions,” J. Agric. Food Chem., vol. 55, pp. 7648-7653, 2007.
  • [19] A.A. Gani, M.R. Ashari and B. Kuswandi, “An optical fiber biosensor for heavy metal ions based on a modified single sol-gel film of urease and chlorophenol red in flow system,” Sens. Lett., vol. 8, pp. 320-327, 2010.
  • [20] S. Zhang, P.N. Williams, C.Y. Zhou, L.Q. Ma, J. Luo, “Extending the functionality of the slurry ferrihydrite-DGT method: Performance evaluation for the measurement of vanadate, arsenate, antimonate and molybdate in water,” Chemosphere, vol. 184, pp. 812-819, 2017.
  • [21] H. Osterlund, S. Chlot, M. Faarinena, A. Widerlund, I. Rodushkin, J. Ingri and D.C. Baxtera, “Simultaneous measurements of As, Mo, Sb, V and W using a ferrihydrite Diffusive Gradients in Thin Films (DGT) device,” Analytica Chimica Acta, vol. 682, pp. 59–65, 2010.
  • [22] H. Zhang, W. Davison, R. Gadi and T. Kobayashi, “In situ measurement of dissolved phosphorus in natural waters using DGT,” Anal. Chim. Acta, vol. 370, pp. 29-38, 1998.
  • [23] J. Dong, H. Fan, D. Sui, L. Li, T. Sun, “Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer,” Analytica Chimica Acta, vol. 822, pp. 69–77, 2014.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Türkan Börklü Budak 0000-0002-1294-2682

Publication Date July 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Börklü Budak, T. (2020). Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(3), 1794-1801. https://doi.org/10.29130/dubited.668626
AMA Börklü Budak T. Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique. DUBİTED. July 2020;8(3):1794-1801. doi:10.29130/dubited.668626
Chicago Börklü Budak, Türkan. “Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 3 (July 2020): 1794-1801. https://doi.org/10.29130/dubited.668626.
EndNote Börklü Budak T (July 1, 2020) Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 3 1794–1801.
IEEE T. Börklü Budak, “Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique”, DUBİTED, vol. 8, no. 3, pp. 1794–1801, 2020, doi: 10.29130/dubited.668626.
ISNAD Börklü Budak, Türkan. “Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/3 (July 2020), 1794-1801. https://doi.org/10.29130/dubited.668626.
JAMA Börklü Budak T. Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique. DUBİTED. 2020;8:1794–1801.
MLA Börklü Budak, Türkan. “Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 3, 2020, pp. 1794-01, doi:10.29130/dubited.668626.
Vancouver Börklü Budak T. Investigation of Adsorption Studies of Different Arsenic Species Using the Diffusive Gradients in Thin Film (DGT) Technique. DUBİTED. 2020;8(3):1794-801.