Research Article
BibTex RIS Cite

Çözünmüş Tuzların Fiziksel Olarak Saflaştırılmış Sıkıştırılmış Bentonitin Erozyonu Üzerindeki Etkisi

Year 2024, Volume: 4 Issue: 1, 38 - 58, 03.05.2024
https://doi.org/10.59838/etoxec.1422258

Abstract

Sıkıştırılmış bentonit, kullanılmış nükleer atıkların yüzey altı depolanması için uygun bir yastık malzemesidir. Sıkıştırılmış bentonitin su ile teması, suya daldırılması ve ardından komşu boşluklara doğru şişmesi, kolloid ince tanelerin gelişimi için temel süreçlerdir. Bu çalışmada, iyonik gücün sıkıştırılmış bentonitin erozyonu üzerindeki etkisini incelemek için, akış hızları sabit tutularak sadece bentonitle temas eden suyun iyonik güç değerleri değiştirilmiştir. Deney boyunca bentonite temas eden suyun iyonik gücünü değiştirmek için sodyum klorür kullanılmıştır. Aşınan parçacık miktarını belirlemek için bulanıklık ölçer (TM) kullanılmıştır. Bentonit parçalarının çözünmesi sadece fiziksel stabiliteleri nedeniyle değil aynı zamanda içerdikleri radyoaktif izotoplar nedeniyle de kritik öneme sahiptir. Bir deney metodolojisi tanıtılmıştır. Uygulanan akış hızları 0,06 ml/dak ve 0,22 ml/dak, seçilen sular ise damıtılmış su ve 0,05 M NaCl iyonik dayanımlı su olmuştur. Kullanılan sıkıştırılmış bentonit numunelerinin kuru yoğunlukları 1,67 g/cm3, 1,72 g/cm3, 1,72 g/cm3 ve 1,72 g/cm3'tür. Damıtılmış su ile, 0,06 ml/dak akış hızı kullanılarak 24. günün sonunda ölçülen toplam erozyon değeri 1002,7 mg iken, 0,05 M NaCl tuzu içeren su kullanılarak 24. günün sonunda ölçülen nihai erozyon değeri 31,13 mg'dır. Damıtılmış su durumunda, 0,22 ml/dak akış hızı kullanılarak 24. günün sonunda ölçülen toplam erozyon değeri 1774,85 mg iken, 0,05 M NaCl tuzu içeren su kullanılarak 24. günün sonunda ölçülen toplam erozyon değeri 73,6 mg'dır. Bu da suyun iyonik kuvvetinin erozyon üzerindeki etkisinin ihmal edilemeyecek kadar önemli olduğunu göstermektedir.

Ethical Statement

Bilgileri yukarıda verilen ve Environmental Toxicology and Ecology Dergisi'ne gönderilen çalışmamızın yazım sürecinde uluslararası bilimsel, etik ve alıntı kurallarına uyulmuş, toplanan veriler üzerinde herhangi bir tahrifat yapılmamıştır, karşılaşılacak tüm etik ihlallerde Environmental Toxicology and Ecology Dergisi’nin ve editör kurulunun hiçbir sorumluluğu yoktur. Tüm sorumluluğun bana ait olduğunu ve bu çalışmanın Environmental Toxicology and Ecology Dergisi’nden başka hiçbir akademik yayın ortamında değerlendirilmemiş olduğunu taahhüt ederim.

References

  • Cho, W. J., Lee, J. O., Chun, K. S., & Park, H. S. Analysis of functional criteria for buffer material in a high-level radioactive waste repository. Nuclear Engineering and Technology, vol. 31, no.1, pp. 116-132, 1999.
  • J. Andersson, A. Ström, C. Svemar, K.-E. Almén, L.O. Ericsson, SKB Technical Report, TR-00-12, 2000.
  • S. García-García, M. Jonsson, and S. Wold, “Temperature effect on the stability of bentonite colloids in water,” Journal of Colloid and Interface Science, vol. 298, no. 2, pp. 694–705, Jun. 2006, doi: https://doi.org/10.1016/j.jcis.2006.01.018.
  • S. García-García, S. Wold and M. Jonsson, “Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength,” Applied Clay Science, vol. 43, no. 1, pp. 21–26, Jan. 2009, doi: https://doi.org/10.1016/j.clay.2008.07.011.
  • C. Reid, R. J. Lunn, Gráinne El Mountassir, and A. Tarantino, “A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture,” Mineralogical Magazine, vol. 79, no. 6, pp. 1485–1494, Nov. 2015, doi: https://doi.org/10.1180/minmag.2015.079.6.23.
  • Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., & Thompson, J. L.. Migration of plutonium in ground water at the Nevada Test Site. Nature, vol. 397, pp.56-59, Jan. 1999.
  • G. S. Boulton, P. E. Caban, and K. Van Gijssel, “Groundwater flow beneath ice sheets: Part I — Large scale patterns,” Quaternary Science Reviews, vol. 14, no. 6, pp. 545–562, Jan. 1995, doi: https://doi.org/10.1016/0277-3791(95)00039-r.
  • Puigdomenech, SKB Technical Report, TR-01-28, 2001.
  • M. Benna, N. Kbir-Ariguib, A. Magnin, and F. Bergaya, “Effect of pH on Rheological Properties of Purified Sodium Bentonite Suspensions,” Journal of Colloid and Interface Science, vol. 218, no. 2, pp. 442–455, Oct. 1999, doi: https://doi.org/10.1006/jcis.1999.6420.
  • P. F. Luckham and S. Rossi, “The colloidal and rheological properties of bentonite suspensions,” Advances in Colloid and Interface Science, vol. 82, no. 1–3, pp. 43–92, Oct. 1999, doi: https://doi.org/10.1016/s0001-8686(99)00005-6.
  • D. Penner and G. Lagaly, “Influence of anions on the rheological properties of clay mineral dispersions,” Applied Clay Science, vol. 19, no. 1–6, pp. 131–142, Jul. 2001, doi: https://doi.org/10.1016/s0169-1317(01)00052-7.
  • V. R. Ouhadi, R. N. Yong, and M. Sedighi, “Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite,” Applied Clay Science, vol. 32, no. 3–4, pp. 217–231, May 2006, doi: https://doi.org/10.1016/j.clay.2006.02.003.
  • Tiziana Missana, U. Alonso, and María Jesús Turrero, “Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository,” vol. 61, no. 1–4, pp. 17–31, Mar. 2003, doi: https://doi.org/10.1016/s0169-7722(02)00110-9.
  • Min Hoon Baik, W.-J. Cho, and P.-S. Hahn, “Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite,” Engineering Geology, vol. 91, no. 2–4, pp. 229–239, May 2007, doi: https://doi.org/10.1016/j.enggeo.2007.02.002.
  • L. Moreno, L. Liu, and Ivars Neretnieks, “Erosion of sodium bentonite by flow and colloid diffusion,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 36, no. 17–18, pp. 1600–1606, Jan. 2011, doi: https://doi.org/10.1016/j.pce.2011.07.034.
  • Z. Gong, L. Liao, G. Lv, and X. Wang, “A simple method for physical purification of bentonite,” Applied Clay Science, vol. 119, pp. 294–300, Jan. 2016, doi: https://doi.org/10.1016/j.clay.2015.10.031.
  • M. H. Baik and S. Y. Lee, “Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength,” Journal of Industrial and Engineering Chemistry, vol. 16, no. 5, pp. 837–841, Sep. 2010, doi: https://doi.org/10.1016/j.jiec.2010.05.002.

The Impact of Dissolved Salts on the Erosion of Physically Purified Compacted Bentonite

Year 2024, Volume: 4 Issue: 1, 38 - 58, 03.05.2024
https://doi.org/10.59838/etoxec.1422258

Abstract

Compressed bentonite is an appropriate cushion material for getting rid of spent nuclear waste below the surface storage. The contact of compressed bentonite with water, its immersion in water and subsequently its swelling into the neighboring gaps are the principal processes for the development of colloid fines. In this study, to examine the impact of ionic strength on the erosion of compacted bentonite, only the ionic power values of the water contacting the bentonite were changed by keeping the flow rates constant. Sodium chloride was used to change the ionic power of the water contacting the bentonite throughout the experiment. Turbidity meter (TM) was used to determine the amount of eroded particles. The dissolution of bentonite fragments is critical not only due to their physical stability but also due to the radioactive isotopes they contain. An experimentation methodology is introduced. The implemented flow rates were 0.06 ml/min and 0.22 ml/min, and the selected waters were distilled water and 0.05 M NaCl ionic strength water. The dry densities of the compressed bentonite samples used were 1.67 g/cm3, 1.72 g/cm3, 1.72 g/cm3 and 1.72 g/cm3. With distilled water, the total erosion value measured at the end of the 24th day using a flow rate of 0.06 ml/min was 1002.7 mg, whereas the final erosion value measured at the end of the 24th day using water containing 0.05 M NaCl salt was 31.13 mg. In the case of distilled water, the total erosion value measured at the end of the 24th day using a flow rate of 0.22 ml/min was 1774.85 mg, while the total erosion value measured at the end of the 24th day using water containing 0.05 M NaCl salt was 73.6 mg. This demonstrates that the influence of the ionic strongness of the water on erosion is too important to be neglected.

References

  • Cho, W. J., Lee, J. O., Chun, K. S., & Park, H. S. Analysis of functional criteria for buffer material in a high-level radioactive waste repository. Nuclear Engineering and Technology, vol. 31, no.1, pp. 116-132, 1999.
  • J. Andersson, A. Ström, C. Svemar, K.-E. Almén, L.O. Ericsson, SKB Technical Report, TR-00-12, 2000.
  • S. García-García, M. Jonsson, and S. Wold, “Temperature effect on the stability of bentonite colloids in water,” Journal of Colloid and Interface Science, vol. 298, no. 2, pp. 694–705, Jun. 2006, doi: https://doi.org/10.1016/j.jcis.2006.01.018.
  • S. García-García, S. Wold and M. Jonsson, “Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength,” Applied Clay Science, vol. 43, no. 1, pp. 21–26, Jan. 2009, doi: https://doi.org/10.1016/j.clay.2008.07.011.
  • C. Reid, R. J. Lunn, Gráinne El Mountassir, and A. Tarantino, “A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture,” Mineralogical Magazine, vol. 79, no. 6, pp. 1485–1494, Nov. 2015, doi: https://doi.org/10.1180/minmag.2015.079.6.23.
  • Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., & Thompson, J. L.. Migration of plutonium in ground water at the Nevada Test Site. Nature, vol. 397, pp.56-59, Jan. 1999.
  • G. S. Boulton, P. E. Caban, and K. Van Gijssel, “Groundwater flow beneath ice sheets: Part I — Large scale patterns,” Quaternary Science Reviews, vol. 14, no. 6, pp. 545–562, Jan. 1995, doi: https://doi.org/10.1016/0277-3791(95)00039-r.
  • Puigdomenech, SKB Technical Report, TR-01-28, 2001.
  • M. Benna, N. Kbir-Ariguib, A. Magnin, and F. Bergaya, “Effect of pH on Rheological Properties of Purified Sodium Bentonite Suspensions,” Journal of Colloid and Interface Science, vol. 218, no. 2, pp. 442–455, Oct. 1999, doi: https://doi.org/10.1006/jcis.1999.6420.
  • P. F. Luckham and S. Rossi, “The colloidal and rheological properties of bentonite suspensions,” Advances in Colloid and Interface Science, vol. 82, no. 1–3, pp. 43–92, Oct. 1999, doi: https://doi.org/10.1016/s0001-8686(99)00005-6.
  • D. Penner and G. Lagaly, “Influence of anions on the rheological properties of clay mineral dispersions,” Applied Clay Science, vol. 19, no. 1–6, pp. 131–142, Jul. 2001, doi: https://doi.org/10.1016/s0169-1317(01)00052-7.
  • V. R. Ouhadi, R. N. Yong, and M. Sedighi, “Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite,” Applied Clay Science, vol. 32, no. 3–4, pp. 217–231, May 2006, doi: https://doi.org/10.1016/j.clay.2006.02.003.
  • Tiziana Missana, U. Alonso, and María Jesús Turrero, “Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository,” vol. 61, no. 1–4, pp. 17–31, Mar. 2003, doi: https://doi.org/10.1016/s0169-7722(02)00110-9.
  • Min Hoon Baik, W.-J. Cho, and P.-S. Hahn, “Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite,” Engineering Geology, vol. 91, no. 2–4, pp. 229–239, May 2007, doi: https://doi.org/10.1016/j.enggeo.2007.02.002.
  • L. Moreno, L. Liu, and Ivars Neretnieks, “Erosion of sodium bentonite by flow and colloid diffusion,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 36, no. 17–18, pp. 1600–1606, Jan. 2011, doi: https://doi.org/10.1016/j.pce.2011.07.034.
  • Z. Gong, L. Liao, G. Lv, and X. Wang, “A simple method for physical purification of bentonite,” Applied Clay Science, vol. 119, pp. 294–300, Jan. 2016, doi: https://doi.org/10.1016/j.clay.2015.10.031.
  • M. H. Baik and S. Y. Lee, “Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength,” Journal of Industrial and Engineering Chemistry, vol. 16, no. 5, pp. 837–841, Sep. 2010, doi: https://doi.org/10.1016/j.jiec.2010.05.002.
There are 17 citations in total.

Details

Primary Language English
Subjects Environmental Management (Other)
Journal Section Research Articles
Authors

Süleyman Bülbül 0009-0002-1995-5387

Akın Duvan 0000-0002-5617-6107

Publication Date May 3, 2024
Submission Date January 18, 2024
Acceptance Date March 25, 2024
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

IEEE S. Bülbül and A. Duvan, “The Impact of Dissolved Salts on the Erosion of Physically Purified Compacted Bentonite”, Etoxec, vol. 4, no. 1, pp. 38–58, 2024, doi: 10.59838/etoxec.1422258.