Research Article
BibTex RIS Cite

Otomobil güç aktarım sistemleri için elastomer yaylı sönüm sisteminin tasarımı ve doğrulanması

Year 2020, Volume: 35 Issue: 4, 1957 - 1972, 21.07.2020
https://doi.org/10.17341/gazimmfd.665159

Abstract

Otomobillerde artan yüksek konfor gereksinimleri, optimum sistem tasarımı ve uzun kullanım ömrü gerekliliklerini ortaya koymuştur. Bu çalışmada otomobil debriyaj sistemlerinde elastomer tabanlı malzemelerin sönümleyici olarak kullanılması tasarım, test ile doğrulama, tasarım ve sistem optimizasyonu temel aşamaları dikkate alınarak incelenmiştir. Yapılan çalışmalarda geleneksel metal helisel yaylar ile karşılaştırma yapılarak, elastomer yaylı ve metal yaylı sistemlere ait avantaj ve dezavantajları analiz ve test sonuçları ile gösterilmiştir. Elastomer malzemeler hiperelastik ve viskoelastik özelliklerinden dolayı kuvvete, zamana, sıcaklığa, malzeme özellikleri gibi birçok değişkene bağlı olarak metal malzemelerden farklı tepkiler gösterirler. Sürüş güvenliği, mekanik sağlamlık ve ürün ömrü otomobillerde garanti altına alınması gereken konulardır, bu sebeple yüksek dinamik ve termal yüklere maruz kalan debriyaj sisteminde elastomer yay rijitliği için güvenlik faktörü seçiminde yapılması gereken yaklaşımlar da ortaya konulmuştur. Elastomer yay malzeme testleri, son ürün testleri ve sonlu elemanlar analizi ile doğrulanmasının ardından komple otomobil güç aktarım sistemi bir boyutlu modellenerek sistem davranışları karşılaştırmalı olarak incelenmiştir. Otomobil debriyaj sistemleri için elastomer yayların incelenmesi ve bu yayların güç aktarım sistemi için optimizasyonu bu alanda yapılan yeni bir çalışma olup, alternatif malzemelerin yeni nesil otomobillere adaptasyonu ve uygulanması konusunda temel oluşturabilecek niteliktedir.

Thanks

Bu çalışma Valeo Otomotiv A.Ş Ar-Ge Merkezi ve Bursa Uludağ Üniversitesi işbirliği ile gerçekleştirilmiştir.

References

  • 1. Jadhav, N., Bahulikar, S.R., Sapate, N.H. 2016. Comparative Study of Variation of Mooney-Rivlin Hyperelastic Material Models under Uniaxial Tensile Loading. International Journal of Advance Research and Innovative Ideas in Education, Vol: 2 Issue: 4, ISSN(O)-2395-4396, pp. 212-216 2. Wu, Y., Wang, H., Li, A. 2016. Parameter Identification Methods for Hyperelastic and Hyper-Viscoelastic Models. Applied Science, Vol.6, Issue-386, pp. 1-13 3. Mohammed, M.A. 2014. Visco-Hyperelastic Model for Soft Rubber-like Materials. Sains Malaysiana, Vol: 43(3), pp. 451–457 4. Kumar, N., Rao, V. 2016. Hyperelastic Mooney-Rivlin Model: Determination and Physical Interpretation of Material Constants. MIT International Journal of Mechanical Engineering, Vol: 6, No: 1, pp. 43-46 5. Kottapalli, S., Bauchau, O. A., Ju, C., Ozbay, S., Mehrotra, Y. 2010. Analytical First Principles Modeling Of Elastomer Dampers. Techport Online NASA, pp. 1-15 6. Sause, R., Lee, K. S., Ricles, J. 2007. Rate-Independent and Rate-Dependent Models for Hysteretic Behavior of Elastomers. Journal of Engineering Mechanics, Vol:133, Issue: 11, pp. 1-9 7. Marvalova, B. 2007. Viscoelastic Proporties of Filled Rubber. Experimental Observation and Material Modelling. Engineering Mechanics, Vol:14, No:1/2, pp 81–89 8. Melnik, R.V.N, Strunin, D.V., Roberts, A.J. 2005. Nonlinear Analysis Of Rubber-Based Polymeric Materials With Thermal Relaxation Models. Numerical Heat Transfer, Part A, Vol: 47, pp. 549–569 9. Pacheco, J. L., Bavastri, C.A., Pereira, J.T. 2015. Viscoelastic Relaxation Modulus Characterization Using Prony Series, Latin American Journal of Solids and Structures, Vol:12, pp. 420-445 10. Monsia, M. D. 2011. A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials. World Journal of Mechanics, Vol:1, pp. 158-167 11. Sikora, W., Michalczyk, Machnıewicz, T. 2016. A Study of the Preload Force in Metal-Elastomer Torsion Springs. Automotive Mechanic Journal, DOI: 10.1515/ama-2016-0047, Vol: 4, pp. 300-305 12. Adamowicz, A. 2016. Effect of Convective Cooling on Temperature and Thermal Stresses in Disk during Repeated Intermittent Braking. Journal of Friction and Wear, Vol:37, Issue:2, pp.107-112 13. Zhang, Z., Zhang, H. 2014. Viscoelastic Parameter Identification based Structure-Thermal Analysis of Rubber Bushing. Global Journals of Research in Engineering, Volume: 14, Issue: 3, Version 1.0, pp. 1-13 14. Bani, M. S., Stamenkovi, D.S., Miltenovi, V.D., Milosevi, M.S., Miltenovi, A.V., Djeki, P.S., Rackov, M.J. 2012. Prediction Of Heat Generation In Rubber Or Rubber-Metal Springs. Thermal Science, Vol: 16, Issue: 2, pp. 527-539 15. Cu, V. H., Han, B., Pham, D. H. 2017. Tuned mass-high damping rubber damper on a taut cable. KSCE Journal of Civil Engineering, Volume:21, Issue:3, pp. 928-936 16. Koblar, D., Škofic, J., Boltežar, M. 2014. Evaluation of the Young’s Modulus of Rubber-Like Materials Bonded to Rigid Surfaces with Respect to Poisson’s Ratio. Journal of Mechanical Engineering, Vol: 60, Issue: 7. pp. 506-511 17. Ali, A., Hosseini, M., Sahari, B. 2010. A Review of Constitutive Models for Rubber-Like Materials’’ American J. of Engineering and Applied Sciences, Vol: 3, Issue: 1, pp. 232-239 18. Abubakar, I. J., Myler, P., Zhou, E. 2016. Constitutive Modelling of Elastomeric Seal Material under Compressive Loading. Modeling and Numerical Simulation of Material Science, Vol: 6, pp. 28-40 19. Genc, M. O., Konakci, S., Kaya, N. 2018. Experimental and Numerical Approach on Viscoelastic Modelling of Rubber Clutch Damper Spring. 9th International Automotive Technologies Congress, Proceeding 2018, pp. 101-109 20. Gkinis, T., Rahmani, R., Rahnejat, H., Mahony, M. 2018. Heat generation and transfer in automotive dry clutch engagement. Applied Physics & Engineering, Vol: 19, Issue: 3, pp. 175-188 21. Zhang, Z., Zhang, H. 2016. FEA based Dissipation Energy and Temperature Distribution of Rubber Bushing. International Journal of Engineering Research and Applications, ISSN: 2248-9622, Vol: 6, Issue:1, Part - 2, pp. 2-8 22. Dong, X., Yu, M., Liao, C., Chen, W. 2009. A new variable stiffness absorber based on magneto-rheological elastomer. Transactions of Nonferrous Metals Society of China, Volume: 19, Issue: 3, pp. 611-615 23. Kim, W.D., Kim W.S., Woo C.S., Lee H.J. 2004. Some Considerations on Mechanical Testing Methods of Rubbery Materials Using Nonlinear Finite Element Analysis. Polymer International, https://doi.org/10.1002/pi.1379, Vol: 53, pp.850–856 24. Romarino, G., Vetturi D., Cambiaghi D., Pegoretti A., Ricco T. 2003. Developments in Dynamic Testing of Rubber Compounds: Assessment of Non-linear Effects. Polymer Testing, Vol: 22, Issue: 6, pp. 681–687 25. Bradley, G.L., Chang P.C., Mckenna G.B. 2001. Rubber Modeling Using Uniaxial Test Data. Journal of Applied Polymer Science, Vol: 81, pp. 837–848
Year 2020, Volume: 35 Issue: 4, 1957 - 1972, 21.07.2020
https://doi.org/10.17341/gazimmfd.665159

Abstract

References

  • 1. Jadhav, N., Bahulikar, S.R., Sapate, N.H. 2016. Comparative Study of Variation of Mooney-Rivlin Hyperelastic Material Models under Uniaxial Tensile Loading. International Journal of Advance Research and Innovative Ideas in Education, Vol: 2 Issue: 4, ISSN(O)-2395-4396, pp. 212-216 2. Wu, Y., Wang, H., Li, A. 2016. Parameter Identification Methods for Hyperelastic and Hyper-Viscoelastic Models. Applied Science, Vol.6, Issue-386, pp. 1-13 3. Mohammed, M.A. 2014. Visco-Hyperelastic Model for Soft Rubber-like Materials. Sains Malaysiana, Vol: 43(3), pp. 451–457 4. Kumar, N., Rao, V. 2016. Hyperelastic Mooney-Rivlin Model: Determination and Physical Interpretation of Material Constants. MIT International Journal of Mechanical Engineering, Vol: 6, No: 1, pp. 43-46 5. Kottapalli, S., Bauchau, O. A., Ju, C., Ozbay, S., Mehrotra, Y. 2010. Analytical First Principles Modeling Of Elastomer Dampers. Techport Online NASA, pp. 1-15 6. Sause, R., Lee, K. S., Ricles, J. 2007. Rate-Independent and Rate-Dependent Models for Hysteretic Behavior of Elastomers. Journal of Engineering Mechanics, Vol:133, Issue: 11, pp. 1-9 7. Marvalova, B. 2007. Viscoelastic Proporties of Filled Rubber. Experimental Observation and Material Modelling. Engineering Mechanics, Vol:14, No:1/2, pp 81–89 8. Melnik, R.V.N, Strunin, D.V., Roberts, A.J. 2005. Nonlinear Analysis Of Rubber-Based Polymeric Materials With Thermal Relaxation Models. Numerical Heat Transfer, Part A, Vol: 47, pp. 549–569 9. Pacheco, J. L., Bavastri, C.A., Pereira, J.T. 2015. Viscoelastic Relaxation Modulus Characterization Using Prony Series, Latin American Journal of Solids and Structures, Vol:12, pp. 420-445 10. Monsia, M. D. 2011. A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials. World Journal of Mechanics, Vol:1, pp. 158-167 11. Sikora, W., Michalczyk, Machnıewicz, T. 2016. A Study of the Preload Force in Metal-Elastomer Torsion Springs. Automotive Mechanic Journal, DOI: 10.1515/ama-2016-0047, Vol: 4, pp. 300-305 12. Adamowicz, A. 2016. Effect of Convective Cooling on Temperature and Thermal Stresses in Disk during Repeated Intermittent Braking. Journal of Friction and Wear, Vol:37, Issue:2, pp.107-112 13. Zhang, Z., Zhang, H. 2014. Viscoelastic Parameter Identification based Structure-Thermal Analysis of Rubber Bushing. Global Journals of Research in Engineering, Volume: 14, Issue: 3, Version 1.0, pp. 1-13 14. Bani, M. S., Stamenkovi, D.S., Miltenovi, V.D., Milosevi, M.S., Miltenovi, A.V., Djeki, P.S., Rackov, M.J. 2012. Prediction Of Heat Generation In Rubber Or Rubber-Metal Springs. Thermal Science, Vol: 16, Issue: 2, pp. 527-539 15. Cu, V. H., Han, B., Pham, D. H. 2017. Tuned mass-high damping rubber damper on a taut cable. KSCE Journal of Civil Engineering, Volume:21, Issue:3, pp. 928-936 16. Koblar, D., Škofic, J., Boltežar, M. 2014. Evaluation of the Young’s Modulus of Rubber-Like Materials Bonded to Rigid Surfaces with Respect to Poisson’s Ratio. Journal of Mechanical Engineering, Vol: 60, Issue: 7. pp. 506-511 17. Ali, A., Hosseini, M., Sahari, B. 2010. A Review of Constitutive Models for Rubber-Like Materials’’ American J. of Engineering and Applied Sciences, Vol: 3, Issue: 1, pp. 232-239 18. Abubakar, I. J., Myler, P., Zhou, E. 2016. Constitutive Modelling of Elastomeric Seal Material under Compressive Loading. Modeling and Numerical Simulation of Material Science, Vol: 6, pp. 28-40 19. Genc, M. O., Konakci, S., Kaya, N. 2018. Experimental and Numerical Approach on Viscoelastic Modelling of Rubber Clutch Damper Spring. 9th International Automotive Technologies Congress, Proceeding 2018, pp. 101-109 20. Gkinis, T., Rahmani, R., Rahnejat, H., Mahony, M. 2018. Heat generation and transfer in automotive dry clutch engagement. Applied Physics & Engineering, Vol: 19, Issue: 3, pp. 175-188 21. Zhang, Z., Zhang, H. 2016. FEA based Dissipation Energy and Temperature Distribution of Rubber Bushing. International Journal of Engineering Research and Applications, ISSN: 2248-9622, Vol: 6, Issue:1, Part - 2, pp. 2-8 22. Dong, X., Yu, M., Liao, C., Chen, W. 2009. A new variable stiffness absorber based on magneto-rheological elastomer. Transactions of Nonferrous Metals Society of China, Volume: 19, Issue: 3, pp. 611-615 23. Kim, W.D., Kim W.S., Woo C.S., Lee H.J. 2004. Some Considerations on Mechanical Testing Methods of Rubbery Materials Using Nonlinear Finite Element Analysis. Polymer International, https://doi.org/10.1002/pi.1379, Vol: 53, pp.850–856 24. Romarino, G., Vetturi D., Cambiaghi D., Pegoretti A., Ricco T. 2003. Developments in Dynamic Testing of Rubber Compounds: Assessment of Non-linear Effects. Polymer Testing, Vol: 22, Issue: 6, pp. 681–687 25. Bradley, G.L., Chang P.C., Mckenna G.B. 2001. Rubber Modeling Using Uniaxial Test Data. Journal of Applied Polymer Science, Vol: 81, pp. 837–848
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mehmet Onur Genç 0000-0003-0332-1785

Necmettin Kaya 0000-0002-8297-0777

Publication Date July 21, 2020
Submission Date December 26, 2019
Acceptance Date May 9, 2020
Published in Issue Year 2020 Volume: 35 Issue: 4

Cite

APA Genç, M. O., & Kaya, N. (2020). Otomobil güç aktarım sistemleri için elastomer yaylı sönüm sisteminin tasarımı ve doğrulanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 1957-1972. https://doi.org/10.17341/gazimmfd.665159
AMA Genç MO, Kaya N. Otomobil güç aktarım sistemleri için elastomer yaylı sönüm sisteminin tasarımı ve doğrulanması. GUMMFD. July 2020;35(4):1957-1972. doi:10.17341/gazimmfd.665159
Chicago Genç, Mehmet Onur, and Necmettin Kaya. “Otomobil güç aktarım Sistemleri için Elastomer Yaylı sönüm Sisteminin tasarımı Ve doğrulanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 4 (July 2020): 1957-72. https://doi.org/10.17341/gazimmfd.665159.
EndNote Genç MO, Kaya N (July 1, 2020) Otomobil güç aktarım sistemleri için elastomer yaylı sönüm sisteminin tasarımı ve doğrulanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 1957–1972.
IEEE M. O. Genç and N. Kaya, “Otomobil güç aktarım sistemleri için elastomer yaylı sönüm sisteminin tasarımı ve doğrulanması”, GUMMFD, vol. 35, no. 4, pp. 1957–1972, 2020, doi: 10.17341/gazimmfd.665159.
ISNAD Genç, Mehmet Onur - Kaya, Necmettin. “Otomobil güç aktarım Sistemleri için Elastomer Yaylı sönüm Sisteminin tasarımı Ve doğrulanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (July 2020), 1957-1972. https://doi.org/10.17341/gazimmfd.665159.
JAMA Genç MO, Kaya N. Otomobil güç aktarım sistemleri için elastomer yaylı sönüm sisteminin tasarımı ve doğrulanması. GUMMFD. 2020;35:1957–1972.
MLA Genç, Mehmet Onur and Necmettin Kaya. “Otomobil güç aktarım Sistemleri için Elastomer Yaylı sönüm Sisteminin tasarımı Ve doğrulanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 4, 2020, pp. 1957-72, doi:10.17341/gazimmfd.665159.
Vancouver Genç MO, Kaya N. Otomobil güç aktarım sistemleri için elastomer yaylı sönüm sisteminin tasarımı ve doğrulanması. GUMMFD. 2020;35(4):1957-72.