Research Article
BibTex RIS Cite

Zonguldak-Karadon kömüründen elde edilen aktif karbonların oda sıcaklığında aseton adsorpsiyon özelliklerinin incelenmesi

Year 2020, Volume: 35 Issue: 4, 2211 - 2224, 21.07.2020
https://doi.org/10.17341/gazimmfd.686415

Abstract

Zonguldak, Türkiye’nin en büyük taşkömürü yataklarının bulunduğu, sınırları içerisinde bir çok kömür maden ocağının yer aldığı Batı Karadeniz kıyısının önemli bir kömür kentidir. Bu çalışmada Zonguldak Karadon kömür ocağından alınan bitümlü kömür örneklerinden fiziksel ve kimyasal yöntemlerle elde edilen aktif karbonların oda sıcaklığındaki aseton adsorpsiyon özelliklerinin incelenmesi amaçlanmıştır. Aseton adsorpsiyonuna adsorbent hazırlama yöntemi, aktifleştirme ajanı (KOH, NaOH, ZnCl2 ve H3PO4) ve aktifleştirme sıcaklığının (400-800°C) etkileri incelenmiştir. Karadon kömüründen elde edilen farklı aktif karbonlar üzerinde aseton adsorpsiyon mekanizmasının açıklanması amacıyla, aseton adsorpsiyon denge verileri Brunauer-Emmett-Teller, Langmuir, Freundlich, Harkins-Jura, Dubinin-Radushkevich, Dubinin-Astakhov, Henderson, Halsey ve Smith olmak üzere farklı adsorpsiyon izoterm modelleriyle değerlendirilmiş, model parametreleri belirlenmiştir. Maksimum adsorpsiyon kapasitesini veren Langmuir adsorpsiyon modeli sabiti Wm 0,12-0,63 g/g değer aralığında bulunmuştur. Dubinin-Radushkevich modelinden hesaplanan adsorpsiyon karakteristik enerjisi E0’ın 2,87-29,80 kJ/mol aralığında olduğu belirlenmiştir. Kimyasal yöntemle elde edilen aktif karbonların fiziksel aktifleştirme yöntemiyle elde edilen aktif karbonlardan daha yüksek aseton adsorpsiyon kapasitesine sahip oldukları, aseton adsorpsiyon kapasitesinin genellikle toplam gözenek hacmi ile arttığı görülmüştür. Zonguldak-Karadon kömürünün KOH ile 700 ve 800°C’de aktifleştirilmesiyle elde edilen aktif karbonların sırasıyla % 45 ve % 45,99 ile en yüksek aseton adsorpsiyon kapasitesine sahip oldukları belirlenmiştir. Zonguldak-Karadon kömürünün kimyasal aktifleştirilmesiyle elde edilen aktif karbonların aseton adsorpsiyonu için oldukça etkin oldukları ve aseton buharlarının arıtılmasında ticari olarak yüksek bir potansiyele sahip adsorbentler olabilecekleri belirlenmiştir.

Supporting Institution

Zonguldak Bülent Ecevit Universitesi

Project Number

BEUN BAP 2008-13-02-02

Thanks

Bu çalışma Zonguldak Bülent Ecevit Universitesi (BEUN BAP 2008-13-02-02) ve Devlet Planlama Teşkilatı (DPT2003K121110) tarafından desteklenmiştir. Çalışmalarımız esnasındaki değerli katkıları ve destekleri nedeniyle değerli Hocalarımız Gazi Universitesi Kimya Mühendisliği Bölümü Öğretim Üyesi Prof. Dr. Gülşen DOĞU ve Orta Doğu Teknik Üniversitesi Kimya Mühendisliği Bölümü Öğretim Üyesi Prof. Dr. Timur DOĞU’ya en içten teşekkürlerimizi sunarız.

References

  • Wang Z., Li S., Xie S., Liu Y., Dai H., Guo G., Deng J., Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2- resistance for acetone removal. Applied Catalysis A, 579, 106-115, 2019.
  • Chevalier V., Martin J., Peralta D., Roussey A., Tardif F., Performance of HKUST-1 metal-organic framework for a VOCs mixture adsorption at realistic concentrations ranging from 0.5 to 2.5 ppmv under different humidity conditions. Journal of Environmental Chemical Engineering 7, 103131, 2019.
  • Kim B, Lee Y.R., Kim H.Y., Ahn W.S., Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron, 154, 343-349, 2018.
  • Wang H., Wang B., Li J., Zhu T., Adsorption equilibrium and thermodynamics of acetaldehyde/acetone on activated carbon. Separation and Purification Technology, 209, 535-541, 2019.
  • Laskar I.I., Hashisho Z., Phillips J.H., Anderson J.E., Nichols M., Competitive adsorption equilibrium modeling of volatile organic compound (VOC) and water vapor onto activated carbon. Separation and Purification Technology, 212, 632-640, 2019.
  • Zhou K., Ma W., Zeng Z., Ma X., Xu X., Guo Y., Li H., Li L., Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chemical Engineering Journal, 372, 1122-1133, 2019.
  • Liang X., Chi J., Yang Z., The influence of the functional group on activated carbon for acetone adsorption property by molecular simulation study. Microporous and Mesoporous Materials, 262, 77-88, 2018.
  • Erdogan F.O., Kopac T., Highly effective activated carbons from Turkish-Kozlu bituminous coal by physical and KOH activation and sorption studies with organic vapors. International Journal of Chemical Reactor Engineering 17(5), 20180071, 2019.
  • Erdogan F.O., Kopac T., Adsorption behavior of alcohol vapors on Zonguldak-Karadon coal derived porous carbons. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, doi.org/10.1080/15567036.2019.1666191, 2019 (in press).
  • Erdogan F.O., Kopac T., Dynamic analysis of sorption of hydrogen in activated carbon. International Journal of Hydrogen Energy, 32, 3448-3456, 2007.
  • Erdogan F.O., Characterization of the activated carbon surface of cherry stones prepared by sodium and potassium hydroxide. Analytical Letters, 49(7), 1079-1090, 2016.
  • Erdogan F.O., Comparative study of sunset yellow dye adsorption onto cornelian cherry stones-based activated carbon and carbon nanotubes. Bulgarian Chemical Communications, 50(4), 592-601, 2018.
  • Kopac T., Toprak A., Preparation of activated carbons from Zonguldak region coals by physical and chemical activations for hydrogen sorption. International Journal of Hydrogen Energy, 32, 5005-5014, 2007.
  • Kopac T., Toprak A., Hydrogen sorption characteristics of Zonguldak region coal activated by physical and chemical methods. Korean Journal of Chemical Engineering, 26, 1700-1705, 2009.
  • Kopac T., Sulu E., Toprak A., Effect of KOH treatment on bituminous coal for the effective removal of basic blue 41 dye from aqueous solutions. Desalination and Water Treatment, 57, 29007-29018, 2016.
  • Kopac T., Kırca Y., Toprak A., Synthesis and characterization of KOH/boron modified activated carbons from coal and their hydrogen sorption characteristics. International Journal of Hydrogen Energy, 42, 23606-23616, 2017.
  • Kopac T., Sulu E., Comparison of adsorption behavior of basic red 46 textile dye on various activated carbons obtained from Zonguldak coal. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1227-1240, 2019.
  • Kopac T., Kırca Y., Effect of ammonia and boron modifications on the surface and hydrogen sorption characteristics of activated carbons from coal. International Journal of Hydrogen Energy, 2019, doi:10.1016/j.ijhydene.2019.07.125.(in press).
  • Kopac T., Erdogan F.O., Temperature and alkaline hydroxide treatment effects on hydrogen sorption characteristics of multi-walled carbon nanotube-graphite mixture. Journal of Industrial and Engineering Chemistry, 15, 730-735, 2009.
  • González-Navarro M.F., Giraldo L., Moreno-Piraján J.C., Preparation and characterization of activated carbon for hydrogen storage from waste African oil-palm by microwave-induced LiOH basic activation, Journal of Analytical and Applied Pyrolysis, 107, 82-86, 2014.
  • Chen R., Li L., Liu Z., Lu M., Wang C., Li H., Ma W., Wang S., Preparation and characterization of activated carbons from tobacco stem by chemical activation, Journal of the Air & Waste Management Association, 67(6), 713-724, 2017.
  • Xia H., Cheng S., Zhang L., Peng J., Utilization of walnut shell as a feedstock for preparing high surface area activated carbon by microwave induced activation: effect of activation agents, Green Process Synth., 5, 7–14, 2016.
  • Pak S.H., Jeon M.J., Jeon Y.W., Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal, International Biodeterioration & Biodegradation, 113, 195-200, 2016.
  • Maldhure A.V., Ekhe J.D., Pyrolysis of purified kraft lignin in the presence of AlCl3 and ZnCl2, Journal of Environmental Chemical Engineering, 1, 844–849, 2013.
  • Sui H., Liu J., He L., Li X., Jani A., Adsorption and desorption of binary mixture of acetone and ethyl acetate on silica gel. Chemical Engineering Science, 197, 185-194, 2019.
  • Zhang X., Gao B., Fang J., Zou W., Dong L., Cao C., Zhang J., Li Y., Wang H., Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 218, 680-686, 2019.
  • Ushiki I., Sato Y., Ito Y., Takishima S., Inomata H., A generalized model for predicting adsorption equilibria of various volatile organic compounds on activated carbon in the presence of supercritical carbon dioxide. The Journal of Supercritical Fluids, 146, 30-37, 2019.
  • Wang H., Wang B., Li J., Zhu T., Adsorption equilibrium and thermodynamics of acetaldehyde/acetone on activated carbon. Separation and Purification Technology, 209, 535-541, 2019.
  • Ma X., Li L., Chen R., Wang C., Zhou K., Li H., Porous carbon materials based on biomass for acetone adsorption: Effect of surface chemistry and porous structure. Applied Surface Science, 459, 657-664, 2018.
  • Zhou K., Li L., Ma X., Mo Y., Chen R., Li H., Li H., Activated carbons modified by magnesium oxide as highly efficient sorbents for acetone. RSC Advances, 8, 2922, 2018.
  • Li D., Li L., Chen R., Wang C., Li H., Li H., A MIL-101 composite doped with porous carbon from tobacco stem for enhanced acetone uptake at normal temperature. Industrial & Engineering Chemistry Research, 57, 6226-6235, 2018.
  • Zhang X., Gao B., Zheng Y., Hu X., Creamer A.E., Annable M.D., Li Y., Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanism. Bioresource Technology, 245, 606-614, 2017.
  • Yu X., Liu S., Lin G., Zhu X., Zhang S., Qu R., Zheng C., Gao X., Insight into the significant roles of microstructures and functional groups on carbonaceous surfaces for acetone adsorption. RSC Advances, 8, 21541, 2018.
  • Hu H., Zhu J., Yang F., Chen Z., Deng M., Weng L., Ling Y., Zhou Y., A robust etb-type metal-organic framework showing polarity-exclusive adsorption of acetone over methanol for their azeotropic mixture. Chemical Communications, 55, 6495, 2019.
  • Blommaerts N., Dingenen F., Middelkoop V., Savelkouls J., Goemans M., Tytgat T., Verbruggen S.W., Lenaerts S., Ultrafast screening of commercial sorbent materials for VOC adsorption using real-ime FTIR spectroscopy. Separation and Purification Technology, 207, 284-290, 2018.
  • Brunauer S., Emmett P.H., Teller E., Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319, 1938.
  • Langmuir I., The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295, 1916.
  • Freundlich H., Kapillarchemie: Eine Darstellung der Chemie der Kolloide und verwandter Gebiete. Akademische Verlagsgesellschaf, Leipzig, 1909.
  • Harkins W., Jura G., Surfaces of solids. XIII. A vapour adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface on the surface of a solid. J Am Chem Soc., 66, 1366-1373, 1944.
  • Dubinin M. M., Radushkevitch L.V., The equation of the characteristic curve of activated charcoal. Proceedings of the USSR Academy of Sciences, 55, 331–333, 1947.
  • Dubinin M.M., Astakhov V.A. Description of Adsorption Equilibria of Vapors on Zeolites over Wide Ranges of Temperature and Pressure, E.M. Flanigen, L.B. Sand (Eds.), Molecular Sieve Zeolites-II, Adv. Chem. Ser. No. 102, Am. Chem. Soc, Washington, 69-85, 1971.
  • Henderson S. M., A basic concept of equilibrium moisture. Agricultural Engineering, 33, 29–32, 1952.
  • Halsey G.D., The role of surface heterogeneity, Adv Catal., 4, 259–269, 1952.
  • Smith S.E., The sorption of water vapor by high polymers. J. Am. Chem. Soc. 69, 646–651, 1947.
  • Tang L., Li L., Chen R., Wang C., Ma W., Ma X., Adsorption of acetone and isopropanol on organic acid modified activated carbons. Journal of Environmental Chemical Engineering, 4, 2045-2051, 2016.
  • Li L., Tang L., Liang X., Liu Z., Yang Y., Adsorption performance of acetone on activated carbon modified by microwave heating and alkali treatment. Journal of Chemical Engineering of Japan 49 (11), 958-966, 2016.
  • Lee W.H., Reucroft P.J., Vapor adsorption on coal- and wood-based chemically activated carbons (II) adsorption of organic vapors. Carbon 37, 15-20, 1999.
  • Hsieh C.T., Chen J.M., Adsorption energy distribution model for VOCs onto activated carbons. J. Colloid Interface Sci. 255, 248-253, 2002.
  • Jiun-Horng T., Hsiu-Mei C., Guan-Yinag H., Hung-Lung C., Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers. Journal of Hazardous Materials 154, 1183-1191, 2008.
  • Fuertes A.B., Marbán G., Nevskaia D.M., Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths. Carbon 41, 87-96, 2003.

Investigation of acetone adsorption characteristics of activated carbons obtained from Zonguldak-Karadon coal at room temperature

Year 2020, Volume: 35 Issue: 4, 2211 - 2224, 21.07.2020
https://doi.org/10.17341/gazimmfd.686415

Abstract

Project Number

BEUN BAP 2008-13-02-02

References

  • Wang Z., Li S., Xie S., Liu Y., Dai H., Guo G., Deng J., Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2- resistance for acetone removal. Applied Catalysis A, 579, 106-115, 2019.
  • Chevalier V., Martin J., Peralta D., Roussey A., Tardif F., Performance of HKUST-1 metal-organic framework for a VOCs mixture adsorption at realistic concentrations ranging from 0.5 to 2.5 ppmv under different humidity conditions. Journal of Environmental Chemical Engineering 7, 103131, 2019.
  • Kim B, Lee Y.R., Kim H.Y., Ahn W.S., Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron, 154, 343-349, 2018.
  • Wang H., Wang B., Li J., Zhu T., Adsorption equilibrium and thermodynamics of acetaldehyde/acetone on activated carbon. Separation and Purification Technology, 209, 535-541, 2019.
  • Laskar I.I., Hashisho Z., Phillips J.H., Anderson J.E., Nichols M., Competitive adsorption equilibrium modeling of volatile organic compound (VOC) and water vapor onto activated carbon. Separation and Purification Technology, 212, 632-640, 2019.
  • Zhou K., Ma W., Zeng Z., Ma X., Xu X., Guo Y., Li H., Li L., Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chemical Engineering Journal, 372, 1122-1133, 2019.
  • Liang X., Chi J., Yang Z., The influence of the functional group on activated carbon for acetone adsorption property by molecular simulation study. Microporous and Mesoporous Materials, 262, 77-88, 2018.
  • Erdogan F.O., Kopac T., Highly effective activated carbons from Turkish-Kozlu bituminous coal by physical and KOH activation and sorption studies with organic vapors. International Journal of Chemical Reactor Engineering 17(5), 20180071, 2019.
  • Erdogan F.O., Kopac T., Adsorption behavior of alcohol vapors on Zonguldak-Karadon coal derived porous carbons. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, doi.org/10.1080/15567036.2019.1666191, 2019 (in press).
  • Erdogan F.O., Kopac T., Dynamic analysis of sorption of hydrogen in activated carbon. International Journal of Hydrogen Energy, 32, 3448-3456, 2007.
  • Erdogan F.O., Characterization of the activated carbon surface of cherry stones prepared by sodium and potassium hydroxide. Analytical Letters, 49(7), 1079-1090, 2016.
  • Erdogan F.O., Comparative study of sunset yellow dye adsorption onto cornelian cherry stones-based activated carbon and carbon nanotubes. Bulgarian Chemical Communications, 50(4), 592-601, 2018.
  • Kopac T., Toprak A., Preparation of activated carbons from Zonguldak region coals by physical and chemical activations for hydrogen sorption. International Journal of Hydrogen Energy, 32, 5005-5014, 2007.
  • Kopac T., Toprak A., Hydrogen sorption characteristics of Zonguldak region coal activated by physical and chemical methods. Korean Journal of Chemical Engineering, 26, 1700-1705, 2009.
  • Kopac T., Sulu E., Toprak A., Effect of KOH treatment on bituminous coal for the effective removal of basic blue 41 dye from aqueous solutions. Desalination and Water Treatment, 57, 29007-29018, 2016.
  • Kopac T., Kırca Y., Toprak A., Synthesis and characterization of KOH/boron modified activated carbons from coal and their hydrogen sorption characteristics. International Journal of Hydrogen Energy, 42, 23606-23616, 2017.
  • Kopac T., Sulu E., Comparison of adsorption behavior of basic red 46 textile dye on various activated carbons obtained from Zonguldak coal. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1227-1240, 2019.
  • Kopac T., Kırca Y., Effect of ammonia and boron modifications on the surface and hydrogen sorption characteristics of activated carbons from coal. International Journal of Hydrogen Energy, 2019, doi:10.1016/j.ijhydene.2019.07.125.(in press).
  • Kopac T., Erdogan F.O., Temperature and alkaline hydroxide treatment effects on hydrogen sorption characteristics of multi-walled carbon nanotube-graphite mixture. Journal of Industrial and Engineering Chemistry, 15, 730-735, 2009.
  • González-Navarro M.F., Giraldo L., Moreno-Piraján J.C., Preparation and characterization of activated carbon for hydrogen storage from waste African oil-palm by microwave-induced LiOH basic activation, Journal of Analytical and Applied Pyrolysis, 107, 82-86, 2014.
  • Chen R., Li L., Liu Z., Lu M., Wang C., Li H., Ma W., Wang S., Preparation and characterization of activated carbons from tobacco stem by chemical activation, Journal of the Air & Waste Management Association, 67(6), 713-724, 2017.
  • Xia H., Cheng S., Zhang L., Peng J., Utilization of walnut shell as a feedstock for preparing high surface area activated carbon by microwave induced activation: effect of activation agents, Green Process Synth., 5, 7–14, 2016.
  • Pak S.H., Jeon M.J., Jeon Y.W., Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal, International Biodeterioration & Biodegradation, 113, 195-200, 2016.
  • Maldhure A.V., Ekhe J.D., Pyrolysis of purified kraft lignin in the presence of AlCl3 and ZnCl2, Journal of Environmental Chemical Engineering, 1, 844–849, 2013.
  • Sui H., Liu J., He L., Li X., Jani A., Adsorption and desorption of binary mixture of acetone and ethyl acetate on silica gel. Chemical Engineering Science, 197, 185-194, 2019.
  • Zhang X., Gao B., Fang J., Zou W., Dong L., Cao C., Zhang J., Li Y., Wang H., Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 218, 680-686, 2019.
  • Ushiki I., Sato Y., Ito Y., Takishima S., Inomata H., A generalized model for predicting adsorption equilibria of various volatile organic compounds on activated carbon in the presence of supercritical carbon dioxide. The Journal of Supercritical Fluids, 146, 30-37, 2019.
  • Wang H., Wang B., Li J., Zhu T., Adsorption equilibrium and thermodynamics of acetaldehyde/acetone on activated carbon. Separation and Purification Technology, 209, 535-541, 2019.
  • Ma X., Li L., Chen R., Wang C., Zhou K., Li H., Porous carbon materials based on biomass for acetone adsorption: Effect of surface chemistry and porous structure. Applied Surface Science, 459, 657-664, 2018.
  • Zhou K., Li L., Ma X., Mo Y., Chen R., Li H., Li H., Activated carbons modified by magnesium oxide as highly efficient sorbents for acetone. RSC Advances, 8, 2922, 2018.
  • Li D., Li L., Chen R., Wang C., Li H., Li H., A MIL-101 composite doped with porous carbon from tobacco stem for enhanced acetone uptake at normal temperature. Industrial & Engineering Chemistry Research, 57, 6226-6235, 2018.
  • Zhang X., Gao B., Zheng Y., Hu X., Creamer A.E., Annable M.D., Li Y., Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanism. Bioresource Technology, 245, 606-614, 2017.
  • Yu X., Liu S., Lin G., Zhu X., Zhang S., Qu R., Zheng C., Gao X., Insight into the significant roles of microstructures and functional groups on carbonaceous surfaces for acetone adsorption. RSC Advances, 8, 21541, 2018.
  • Hu H., Zhu J., Yang F., Chen Z., Deng M., Weng L., Ling Y., Zhou Y., A robust etb-type metal-organic framework showing polarity-exclusive adsorption of acetone over methanol for their azeotropic mixture. Chemical Communications, 55, 6495, 2019.
  • Blommaerts N., Dingenen F., Middelkoop V., Savelkouls J., Goemans M., Tytgat T., Verbruggen S.W., Lenaerts S., Ultrafast screening of commercial sorbent materials for VOC adsorption using real-ime FTIR spectroscopy. Separation and Purification Technology, 207, 284-290, 2018.
  • Brunauer S., Emmett P.H., Teller E., Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319, 1938.
  • Langmuir I., The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295, 1916.
  • Freundlich H., Kapillarchemie: Eine Darstellung der Chemie der Kolloide und verwandter Gebiete. Akademische Verlagsgesellschaf, Leipzig, 1909.
  • Harkins W., Jura G., Surfaces of solids. XIII. A vapour adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface on the surface of a solid. J Am Chem Soc., 66, 1366-1373, 1944.
  • Dubinin M. M., Radushkevitch L.V., The equation of the characteristic curve of activated charcoal. Proceedings of the USSR Academy of Sciences, 55, 331–333, 1947.
  • Dubinin M.M., Astakhov V.A. Description of Adsorption Equilibria of Vapors on Zeolites over Wide Ranges of Temperature and Pressure, E.M. Flanigen, L.B. Sand (Eds.), Molecular Sieve Zeolites-II, Adv. Chem. Ser. No. 102, Am. Chem. Soc, Washington, 69-85, 1971.
  • Henderson S. M., A basic concept of equilibrium moisture. Agricultural Engineering, 33, 29–32, 1952.
  • Halsey G.D., The role of surface heterogeneity, Adv Catal., 4, 259–269, 1952.
  • Smith S.E., The sorption of water vapor by high polymers. J. Am. Chem. Soc. 69, 646–651, 1947.
  • Tang L., Li L., Chen R., Wang C., Ma W., Ma X., Adsorption of acetone and isopropanol on organic acid modified activated carbons. Journal of Environmental Chemical Engineering, 4, 2045-2051, 2016.
  • Li L., Tang L., Liang X., Liu Z., Yang Y., Adsorption performance of acetone on activated carbon modified by microwave heating and alkali treatment. Journal of Chemical Engineering of Japan 49 (11), 958-966, 2016.
  • Lee W.H., Reucroft P.J., Vapor adsorption on coal- and wood-based chemically activated carbons (II) adsorption of organic vapors. Carbon 37, 15-20, 1999.
  • Hsieh C.T., Chen J.M., Adsorption energy distribution model for VOCs onto activated carbons. J. Colloid Interface Sci. 255, 248-253, 2002.
  • Jiun-Horng T., Hsiu-Mei C., Guan-Yinag H., Hung-Lung C., Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers. Journal of Hazardous Materials 154, 1183-1191, 2008.
  • Fuertes A.B., Marbán G., Nevskaia D.M., Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths. Carbon 41, 87-96, 2003.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Fatma Oguz Erdogan This is me 0000-0001-7030-2918

Turkan Kopac 0000-0002-1642-7987

Project Number BEUN BAP 2008-13-02-02
Publication Date July 21, 2020
Submission Date February 7, 2020
Acceptance Date May 19, 2020
Published in Issue Year 2020 Volume: 35 Issue: 4

Cite

APA Oguz Erdogan, F., & Kopac, T. (2020). Zonguldak-Karadon kömüründen elde edilen aktif karbonların oda sıcaklığında aseton adsorpsiyon özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 2211-2224. https://doi.org/10.17341/gazimmfd.686415
AMA Oguz Erdogan F, Kopac T. Zonguldak-Karadon kömüründen elde edilen aktif karbonların oda sıcaklığında aseton adsorpsiyon özelliklerinin incelenmesi. GUMMFD. July 2020;35(4):2211-2224. doi:10.17341/gazimmfd.686415
Chicago Oguz Erdogan, Fatma, and Turkan Kopac. “Zonguldak-Karadon kömüründen Elde Edilen Aktif karbonların Oda sıcaklığında Aseton Adsorpsiyon özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 4 (July 2020): 2211-24. https://doi.org/10.17341/gazimmfd.686415.
EndNote Oguz Erdogan F, Kopac T (July 1, 2020) Zonguldak-Karadon kömüründen elde edilen aktif karbonların oda sıcaklığında aseton adsorpsiyon özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 2211–2224.
IEEE F. Oguz Erdogan and T. Kopac, “Zonguldak-Karadon kömüründen elde edilen aktif karbonların oda sıcaklığında aseton adsorpsiyon özelliklerinin incelenmesi”, GUMMFD, vol. 35, no. 4, pp. 2211–2224, 2020, doi: 10.17341/gazimmfd.686415.
ISNAD Oguz Erdogan, Fatma - Kopac, Turkan. “Zonguldak-Karadon kömüründen Elde Edilen Aktif karbonların Oda sıcaklığında Aseton Adsorpsiyon özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (July 2020), 2211-2224. https://doi.org/10.17341/gazimmfd.686415.
JAMA Oguz Erdogan F, Kopac T. Zonguldak-Karadon kömüründen elde edilen aktif karbonların oda sıcaklığında aseton adsorpsiyon özelliklerinin incelenmesi. GUMMFD. 2020;35:2211–2224.
MLA Oguz Erdogan, Fatma and Turkan Kopac. “Zonguldak-Karadon kömüründen Elde Edilen Aktif karbonların Oda sıcaklığında Aseton Adsorpsiyon özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 4, 2020, pp. 2211-24, doi:10.17341/gazimmfd.686415.
Vancouver Oguz Erdogan F, Kopac T. Zonguldak-Karadon kömüründen elde edilen aktif karbonların oda sıcaklığında aseton adsorpsiyon özelliklerinin incelenmesi. GUMMFD. 2020;35(4):2211-24.