Review
BibTex RIS Cite

NEW TRENDS IN THE USE OF PROBIOTICS, PREBIOTICS AND SYNBIOTICS IN THE PRODUCTION OF FUNCTIONAL MEAT PRODUCTS

Year 2024, Volume: 49 Issue: 1, 25 - 38, 14.02.2024
https://doi.org/10.15237/gida.GD23111

Abstract

Today, the growing awareness of consumers about adopting and maintaining healthy-eating habits has focused the food industry and scientists on the development of functional new products. Changing consumer demand has accelerated efforts to develop functional meat products that focus on strategies to maximize health-promoting compounds and reduce the presence of ingredients that can have adverse effects on a consumer's health. In this context, scientific studies on the use of new generation probiotics, prebiotics and synbiotics in the development of functional meat products have recently attracted attention in the current literature. It is stated that these agents added to the formulation of meat products represent an important potential in terms of reducing the formation of nitrogenous compounds in the intestine and increasing the functionality of the intestinal microflora. In this review, new approaches for the use of probiotics, prebiotics and synbiotics in the production of functional meat products are discussed.

References

  • Alizadeh, A.M., Hosseini, H., Meybodi, N.M., Hashempour-Baltork, F., Alizadeh-Sani, M., Tajdar-oranj, B., Pirhadi, M., Khaneghah, A.M. (2020). Mitigation of potentially toxic elements in food products by probiotic bacteria: A comprehensive review. Food Research International, 152: 110324, doi: 10.1016/j.foodres.2021.110324.
  • Barbosa, M.S., Todorov, S.D., Jurkiewicz, C.H., Franco, B.D.G.M. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47: 147-153, doi: 10.1016/j.foodcont.2014.07.005.
  • Barragán-Martínez, L.P., Totosaus, A., de Lourdes Pérez-Chabela, M. (2019). Probiotication of cooked sausages employing agroindustrial coproducts as prebiotic co-encapsulant in ionotropic alginate–pectin gels. International Journal of Food Science and Technology, 55(3): 1088-1096, doi:10.1111/ijfs.14259.
  • Barros, J.C., Munekata, P.E.S., de Carvalho, F.A.L., Domínguez, R., Trindade, M.A., Pateiro, M., Lorenzo, J.M. (2021). Healthy beef burgers: Effect of animal fat replacement by algal and wheat germ oil emulsions. Meat Science, 173: 108396, doi: 10.1016/j.meatsci.2020.108396.
  • Bis-Souza, C.V., Penna, A.L.B., da Silva Barretto, A.C. (2020). Applicability of potentially probiotic Lactobacillus casei in low-fat Italian type salami with added fructooligosaccharides: in vitro screening and technological evaluation. Meat Science, 168: 108186, doi: 10.1016/j.meatsci.2020.108186.
  • Budak Bağdatlı, A., Kundakçı, A. (2013). Fermente et ürünlerinde probiyotik mikroorganizmaların kullanımı. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 9(1): 31-37.
  • Câmara, A.K.F.I., Ozaki, M.M., Santos, M., Vidal, V.A.S., Ribeiro, W.O., Paglarini, C.S., Bernardinelli, O.D., Sabadini, E., Pollonio, M.A.R. (2021). Olive oil-based emulsion gels containing chia (Salvia hispanica L.) mucilage delivering healthy claims to low-saturated fat Bologna sausages. Food Structure, 28: 100187, doi: 10.1016/j.foostr.2021.100187.
  • Campos, T.A.F., de Marins, A.R., da Silva, N.M., Matiucci, M.A., dos Santos, I.C., Alcalde, C.R., de Souza, M.L.R., Gomes, R.G., Feihrmann, A.C. (2022). Effect of the addition of the probiotic Bifidobacterium animalis subsp. lactis (BB-12) in free and microencapsulated form and the prebiotic inulin to synbiotic dry coppa. Food Research International, 158: 111544, doi: 10.1016/ j.foodres.2022.111544.
  • Candan, T., Bağdatlı, A. (2018). Et teknolojisinde alternatif ısıtma yöntemleri. El-Cezerî Fen ve Mühendislik Dergisi, 5(2): 656-670, doi: 10.31202/ecjse.403806.
  • Cason, E.E., Al Hakeem, W.G., Adams, D., Shanmugasundaram, R., Selvaraj, R. (2023). Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. Journal of Applied Poultry Research, 32(2): 100315, doi: 10.1016/j.japr.2022.100315.
  • Cavalheiro, C.P., Ruiz-Capillas, C., Herrero, A.M., Jiménez-Colmenero, F., Pintado, T., de Menezesc, C.R., Fries, L.L.M. (2019). Effect of different strategies of Lactobacillus plantarum incorporation in chorizo sausages. Journal of the Science of Food and Agriculture, 99: 6706–6712, doi: 10.1002/jsfa.9952.
  • Cavalheiro, C.P., Ruiz-Capillas, C., Herrero, A.M., Jimenez-Colmenero, F., Pintado, T., de Menezes, C.R. (2020). Effect of encapsulated Lactobacillus plantarum as probiotic on dry-sausages during chilled storage. International Journal of Food Science and Techonology, 55: 3613–21, doi: 10.1111/ ijfs.14695.
  • Chavan, A.R., Singh, A.K., Gupta, R.K., Nakhate, S.P., Poddar, B.J., Gujar, V.V., Purohit, H.J., Khardenavis, A.A. (2023). Recent trends in the biotechnology of functional non-digestible oligosaccharides with prebiotic potential. Biotechnology and Genetic Engineering Reviews, 1-46, doi: 10.1080/02648725.2022.2152627.
  • Coelho, S.R., Lima, Í.A., Martins, M.L., Benevenuto, J., Augusto, A., de Almeida Torres Filho, R., de Lemos Souza Ramos, A., Ramos, E.M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT - Food Science and Technology, 102: 254-259, doi: 10.1016/j.lwt.2018.12.045.
  • Correa, A.C., Lopes, M.S., Perna, R.F., Silva, E.K. (2024). Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydrate Polymers, 323: 121396, doi: 10.1016/j.carbpol.2023.121396.
  • Cosme, F., Inês, A., Vilela, A. (2022). Consumer’s acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Research International, 151: 110842, doi: 10.1016/j.foodres.2021.110842.
  • Cruz, B.C.S., Duarte, V.S., Dias, R.S., Bernardes, A.L., de Paula, S.O., Ferreira, C.L.L.F., Peluzio, M.C.G. (2022). Synbiotic modulates intestinal microbiota metabolic pathways and inhibits DMH-induced colon tumorigenesis through c-myc and PCNA suppression. Food Research International, 158: 111379, doi: 10.1016/ j.foodres.2022.111379.
  • Delikanlı, B., Özcan, T. (2014). Probiyotik içeren yenilebilir filmler ve kaplamalar. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 28(2): 59-70.
  • Dong, S., Li, L., Hao, F., Fang, Z., Zhong, R., Wu, J., Fang, X. (2023). Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poultry Science, 22: 103287, doi: 10.1016/j.psj.2023.103287.
  • Erginkaya, Z., Konuray-Altun, G. (2022). Potential biotherapeutic properties of lactic acid bacteria in foods. Food Bioscience, 46: 101544, doi: 10.1016/j.fbio.2022.101544.
  • Felisberto, M.H.F., Galvão, M.T.E.L., Picone, C.S.F., Cunha, R.L., Pollonio, M.A.R. (2015). Effect of prebiotic ingredients on the rheological properties and microstructure of reduced-sodium and low-fat meat emulsions. LWT - Food Science and Technology, 60: 148-155, doi: 10.1016/j.lwt.2014.08.004.
  • Gu, Q., Yin, Y., Yan, X., Liu, X., Liu, F., McClements, D.J. (2022). Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Advances in Colloid and Interface Science, 309: 102781, doi: 10.1016/j.cis.2022.102781.
  • Özünlü, O., Ergezer, H., Gökçe, R. (2019). Sağlıklı et ürünleri geliştirme stratejileri. Pamukkale Universitesi Mühendislik Bilim Dergisi, 25(7): 839-845.
  • Hurtado-Romero, A., Toro-Barbosa, M.D., Garcia-Amezquita, L.E., García-Cayuela, T. (2020). Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology, 104: 117–131, doi: 10.1016/ j.tifs.2020.08.007.
  • Illippangama, A.U., Jayasena, D.D., Jo, C., Mudannayake, D.C. (2022). Inulin as a functional ingredient and their applications in meat products. Carbohydrate Polymers, 275: 118706, doi: 10.1016/j.carbpol.2021.118706.
  • Ishikawa, K., Hasegawa, R., Shibutani, K., Mikami, Y., Kawai, F., Matsuo, T., Uehara, Y., Mori, N. (2023). Probiotic-related Clostridium butyricum bacteremia: A case report and literature review. Anaerobe, 83: 102770, doi: 10.1016/j.anaerobe.2023.102770.
  • İsmailoğlu Ö., Öngün-Yılmaz, H. (2019). Probiyotik kullanımının bağırsak mikrobiyotası üzerine etkisi. Sağlık Bilimleri ve Araştırmaları Dergisi 1(1): 38-56.
  • Jaworska, D., Neffe, K., Kołozyn-Krajewska, D., Dolatowski, Z. (2011). Survival during storage and sensory effect of potential probiotic lactic acid bacteria Lactobacillus acidophilus Bauer and Lactobacillus casei Bif3’/IV in dry fermented pork loins. International Journal of Food Science and Technology, 46: 2491-2497, doi:10.1111/j.1365-2621.2011.02772.x.
  • Jung, J.T., Lee, J., Choi, Y.S., Lee, J.H., Choi, J.S., Choi, Y.I. (2018). Effect of rice bran and wheat fibers on microbiological and physicochemical properties of fermented sausages during ripening and storage. Korean Journal for Food Science of Animal Resources, 38(2): 302-314, doi:10.5851/kosfa.2018.38.2.302.
  • Klinder, A., Forster, A., Caderni, G., Femia, A.P., Pool-Zobel, B.L. (2004). Fecal water genotoxicity is predictive of tumor preventive activities by inulin-like oligofructoses, probiotics (Lactobacillus rhamnosus and Bifidobacterium lactis), and their synbiotic combination. Nutrition and Cancer, 49(2): 144-155, doi: 10.1207/s15327914nc4902_5.
  • Kozan, H.İ., Sarıçoban, C. (2023). Effect of oat bran addition on the survival of selected probiotic strains in Turkish fermented sausage during cold storage. Food Bioscience, 54: 102820, doi: 10.1016/j.fbio.2023.102820.
  • Leonard, W., Hutchings, S.C., Warner, R.D., Fang, Z. (2019). Effects of incorporating roasted lupin (Lupinus angustifolius) flour on the physicochemical and sensory attributes of beef sausage. International Journal of Food Science and Technology, 54(5): 1849–1857, doi: 10.1111/ijfs.14088.
  • Macho-González, A., Bastida, S., Garcimartín, A., López-Oliva, M.E., González, P., Benedí, J., González-Muñoz, M.J., Sánchez-Muniz, F.J. (2021) Functional Meat Products as Oxidative Stress Modulators: A Review. Advances in Nutrition, 12: 1514–1539, doi: 10.1093/advances/nmaa182.
  • Mafra, J.F., Cruz, A.I.C., de Santana, T.S., Ferreira, M.A., Araújo, F.M., Evangelısta-Barreto, N.S. (2021). Probiotic characterization of a commercial starter culture used in the fermentation of sausages. Food Science and Technology, 41(1): 240-246, doi: 10.1590/fst.12120.
  • Manassi, C.F., de Souza, S.S., Hassemer, G.S., Sartor, S., Lima, C.M.G., Miotto, M., Lindner, J.D., Rezzadori, K., Pimentel, T.C., Ramos, G.L.P.A., Esmerino, E., Duarte, M.C.K.H., Marsico, E.T., Verruck, S. (2022). Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Research International, 154: 111035, doi: 10.1016/j.foodres.2022.111035.
  • Manoj, P.M., Mohan, J.R., Khasherao, B.Y., Shams, R., Dash, K.K. (2023). Fruit based probiotic functional beverages: A review. Journal of Agriculture and Food Research, 14: 100729, doi: 10.1016/j.jafr.2023.100729.
  • Manzoor, S., Wani, S.M., Mir, S.A., Rizwan, D. (2022). Role of probiotics and prebiotics in mitigation of different diseases. Nutrition, 96: 111602, doi: 10.1016/j.nut.2022.111602.
  • Nedelcheva, P., Denkova, Z., Denev, P., Slavchev, A., Krastanov, A. (2010) Probiotic strain Lactobacillus plantarum NBIMCC 2415 with antioxidant activity as a starter culture in the production of dried fermented meat products. Biotechnology & Biotechnological Equipment, 24(1): 1624-1630, doi: 10.2478/V10133-010-0016-4.
  • Özbay Doğu, S., Sarıçoban, C. (2015). Probiyotik et ürünleri ve beslenme. Türk Tarım–Gıda Bilim ve Teknoloji Dergisi, 3(4): 183-189, doi: 20.500.12451/1310.
  • Özer, C.O., Kılıç, B., Başyiğit-Kılıç, G. (2016). In-vitro microbial production of conjugated linoleic acid by probiotic L. plantarum strains: Utilization as a functional starter culture in sucuk fermentation. Meat Science, 114: 24-31, doi: 10.1016/j.meatsci.2015.12.005.
  • Paglarini, C.S., Furtado, G.F., Honório, A.R., Mokarzel, L., Vidal, V.A.S., Ribeiro, A.P.B., Cunha, R.L., Pollonio, M.A.R. (2019). Functional emulsion gels as pork back fat replacers in Bologna sausage. Food Structure, 20: 100105, doi: 10.1016/j.foostr.2019.100105.
  • Pérez-Burillo, S., Mehta, T., Pastoriza, S., Kramer, D., Paliy, O., Rufián-Henares, J.Á. (2019). Potential probiotic salami with dietary fiber modulates antioxidant capacity, short-chain fatty acid production and gut microbiota community structure. LWT - Food Science and Technology, 105: 355–362, doi: 10.1016/j.lwt.2019.02.006.
  • Pimentel, T.C., de Assis, B.B.T., Rocha, C.S., Marcolino, V.A., Rosset, M., Magnani, M. (2022). Prebiotics in non-dairy products: Technological and physiological functionality, challenges, and perspectives. Food Bioscience, 46: 101585, doi: 10.1016/j.fbio.2022.101585.
  • Pintado, T., Herrero, A.M., Ruiz-Capillas, C., Triki, M., Carmona P., Jiménez-Colmenero, F. (2015). Effects of emulsion gels containing bioactive compounds on sensorial, technological, and structural properties of frankfurters. Food Science and Technology International, 22(2): 132–145, doi: 10.1177/1082013215577033.
  • Rahman, U., Khan, M.I., Sohaib, M., Sahar, A., Ishaq, A. (2017) Exploiting microorganisms to develop improved functional meat sausages: A review. Food Reviews International, 33(2): 195-215, doi: 10.1080/87559129.2016.1175012.
  • Reque, P.M., Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science & Technology, 114: 1–10, doi: 10.1016/ j.tifs.2021.05.022.
  • Rodrigues, F.J., Cedran, M.F., Bicas, J.L., Sato, H.H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137: 109682, doi: 10.1016/j.foodres.2020.109682.
  • Roselino, M.N., Sakamoto, I.K., Adorno, M.A.T., Canaan, J.M.M., de Valdez, G.F., Rossi, E.A., Sivieri, K., Cavallini, D.C.U. (2020). Effect of fermented sausages with probiotic Enterococcus faecium CRL 183 on gut microbiota using dynamic colonic model. LWT - Food Science and Technology, 132: 109876, doi: 10.1016/j.lwt.2020.109876.
  • Rouhi, M., Sohrabvandi, S., Mortazavian, A.M. (2013). Probiotic fermented sausage: viability of probiotic microorganisms and sensory characteristics. Critical Reviews in Food Science and Nutrition, 53(4): 331-348, doi: 10.1080/ 10408398.2010.531407.
  • Ruiz, J.N., Villanueva, N.D.M., Favaro-Trindade, C.S., Contreras-Castillo, C.J. (2014). Physicochemical, microbiological and sensory assessments of Italian salami. Scientia Agricola, doi: 10.1590/S0103-90162014000300005.
  • Sáez-Orviz, S., Rendueles, M., Díaz, M. (2023). Impact of adding prebiotics and probiotics on the characteristics of edible films and coatings- a review. Food Research International, 164: 112381, doi: 10.1016/j.foodres.2022.112381.
  • Santos, M., Ozaki, M.M., Ribeiro, W.O., Paglarini, C.S., Vidal, V.A.S., Campagnol, P.C.B., Pollonio, M.A.R. (2020). Emulsion gels based on pork skin and dietary fibers as animal fat replacers in meat emulsions: An adding value strategy to byproducts. LWT - Food Science and Technology, 120: 108895, doi: 10.1016/j.lwt.2019.108895.
  • Selani, M.M., Shirado, G.A.N., Margiotta, G.B., Saldaña, E., Spada, F.P., Piedade, S.M.S., Contreras-Castillo, C.J., Canniatti-Brazaca, S.G. (2016). Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger. Meat Science, 112: 69–76, doi: 10.1016/ j.meatsci.2015.10.020.
  • Sirini N. Roldán, A. Lucas-González, R. Fernández-López, J. Viuda-Martos, M. Pérez-Àlvarez, J.A., Frizzo, L.S., Rosmini, M.R. (2020). Effect of chestnut flour and probiotic microorganism on the functionality of dry-cured meat sausages. LWT - Food Science and Technology, 134: 110197, doi: 10.1016/j.lwt.2020.110197.
  • Sirini, N., Stegmayer, M., Ruiz, M.J., Cuffia, F., Rossler, E., Otero, J., Soto, L., Lorenzo, J.M., Pérez-Àlvarez, J.A., Rosmini, M., Frizzo, L. (2023). Applicability of the probiotic Lactiplantibacillus plantarum BFL as an adjunct culture in a dry fermented sausage. Meat Science, 200: 109166, doi: 10.1016/j.meatsci.2023.109166.
  • Slima, S.B., Trabelsi, I., Ktari, N., Kriaa, M., Abdeslam, A., Herrero, A.M., Jiménez-Colmenero, F., Ruiz-Capillas, C., Salah, R.B. (2020). Modeling the influence of functional additives in beef sausages using a Box-Benkhen design: Effects on quality characteristics. Food Bioscience, 35: 100572, doi: 10.1016/j.fbio.2020.100572.
  • Trabelsi, I., Slimaa, S.B., Ktarib, N., Trikic, M., Abdehedid, R., Abazaa, W., Moussac, H., Abdeslame, A., Salaha, R.B. (2019). Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science, 154: 29–36, doi: 10.1016/j.meatsci.2019.04.005.
  • Vasconcelos, L. I. M., da Silva-Buzanello, R. A., Kalschne, D. L., Scremin, F. R., Bittencourt, P. R. S., Dias, J. T. G., Canan, C., Corso, M.P. (2021). Functional fermented sausages incorporated with microencapsulated Lactobacillus plantarum BG 112 in Acrycoat S100. LWT - Food Science and Technology, 148: 111596, doi: 10.1016/ j.lwt.2021.111596.
  • Vasilev, D., Jovetic, M., Vranic, D., Tomovic, V., Jokanovic, M., Dimitrijevic, M., Karabasil, N., Vasiljevic, N. (2016). Quality and microflora of functional fermented sausages enriched with probiotic L.casei LC01 and prebiotic with KCl and CaCl2 as NaCl substitutes. Fleischwirtschaft, 96(2): 96-102.
  • Velázquez-González, F.G., Urquiza-Martínez, M.V., Manhães-de-Castro, R., Romero-Juárez, P.A., Bedolla-Valdez, Z.I., Ponce-Pérez, J.M., Farías-Gaytán, E., Vázquez-Garcidueñas, M.S., Vázquez-Marrufo, G., Toscano, A.E., Torner, L., Pérez-Villarreal, J., Guzmán-Quevedo, O. (2023). Chronic consumption of avocado seed (Persea americana) promotes a negative energy balance and body weight reduction in high-fat diet exposed mice: Implications for functional foods. Journal of Functional Foods, 108: 105751, doi: 10.1016/ j.jff.2023.105751.
  • Yu, D., Feng, M., Sun, J. (2020). Influence of mixed starters on the degradation of proteins and the formation of peptides with antioxidant activities in dry fermented sausages. Food Control, 123: 1-9, doi: 10.1016/j.foodcont.2020.107743.
  • Yuca, B., Topçu, İ., Yağcılar-Aydemir, H., Özer, C.O., Kılıç, B., Başyiğit-Kılıç, G. (2019). Effects of beta-glucan addition on the physicochemical and microbiological characteristics of fermented sausage. Journal of Food Science and Technology, 56(7): 3439-3448, doi: 10.1007/s13197-019-03830-6.
  • Zhou, H., Zhuang, X., Zhou, C., Ding, D., Li, C., Bai, Y. (2020). Effect of fermented blueberry on the oxidative stability and volatile molecule profiles of emulsion-type sausage during refrigerated storage. Asian-Australasian Journal of Animal Sciences, 33(5): 812–824, doi: 10.5713/ajas.19.0094.
  • Zhou, L., Han, F., Lu, K., Qiao, Y., Li E. (2023) Comparative study on prebiotic effects of different types of prebiotics in an in vitro fermentation by gut microbiota of shrimp (Litopenaeus vannamei). Aquaculture, 574: 739687, doi: 10.1016/j.aquaculture.2023.739687.
  • Zhuang, H., Li, X., Wu, S., Zhao, J., Gao, Y., Yan, H. (2022), Application of ginseng powder and combined starter culture for improving the oxidative stability, microbial safety and quality characteristics of sausages. LWT - Food Science and Technology, 166: 113749, doi: 10.1016/ j.lwt.2022.113749.
  • Xie, A., Zhao, S., Liu, Z., Yue, X.,Shao, J., Li, M., Li, Z. (2023). Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. International Journal of Biological Macromolecules, 242: 124784, doi: 10.1016/j.ijbiomac.2023.124784.

FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER

Year 2024, Volume: 49 Issue: 1, 25 - 38, 14.02.2024
https://doi.org/10.15237/gida.GD23111

Abstract

Günümüzde tüketicilerin sağlıklı beslenme alışkanlıklarını benimsemek ve sürdürmek konusundaki farkındalıklarının artması gıda endüstrisi ve bilim insanlarını fonksiyonel yeni ürünlerin geliştirilmesine odaklamıştır. Değişen tüketici talebi, sağlığı teşvik eden bileşikleri en üst düzeye çıkarma ve tüketicinin sağlığı üzerinde olumsuz etkilere neden olabilecek bileşenlerin varlığını azaltma stratejilerine odaklanan fonksiyonel et ürünleri geliştirmeye yönelik çalışmalara ivme kazandırmıştır. Bu bağlamda güncel literatürde fonksiyonel et ürünlerinin geliştirilmesinde yeni nesil probiyotikler, prebiyotikler ve sinbiyotiklerin kullanımına yönelik bilimsel çalışmalar dikkat çekmektedir. Et ürünleri formulasyonuna ilave edilen bu ajanların bağırsakta azotlu bileşiklerin oluşumunu azaltması ve bağırsak mikroflorasının işlevselliğini arttırması yönleriyle önemli bir potansiyel oluşturduğu bildirilmektedir. Bu derlemede fonksiyonel et ürünleri üretiminde probiyotik, prebiyotik ve sinbiyotiklerin kullanımına yönelik yeni yaklaşımlar irdelenmiştir.

References

  • Alizadeh, A.M., Hosseini, H., Meybodi, N.M., Hashempour-Baltork, F., Alizadeh-Sani, M., Tajdar-oranj, B., Pirhadi, M., Khaneghah, A.M. (2020). Mitigation of potentially toxic elements in food products by probiotic bacteria: A comprehensive review. Food Research International, 152: 110324, doi: 10.1016/j.foodres.2021.110324.
  • Barbosa, M.S., Todorov, S.D., Jurkiewicz, C.H., Franco, B.D.G.M. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47: 147-153, doi: 10.1016/j.foodcont.2014.07.005.
  • Barragán-Martínez, L.P., Totosaus, A., de Lourdes Pérez-Chabela, M. (2019). Probiotication of cooked sausages employing agroindustrial coproducts as prebiotic co-encapsulant in ionotropic alginate–pectin gels. International Journal of Food Science and Technology, 55(3): 1088-1096, doi:10.1111/ijfs.14259.
  • Barros, J.C., Munekata, P.E.S., de Carvalho, F.A.L., Domínguez, R., Trindade, M.A., Pateiro, M., Lorenzo, J.M. (2021). Healthy beef burgers: Effect of animal fat replacement by algal and wheat germ oil emulsions. Meat Science, 173: 108396, doi: 10.1016/j.meatsci.2020.108396.
  • Bis-Souza, C.V., Penna, A.L.B., da Silva Barretto, A.C. (2020). Applicability of potentially probiotic Lactobacillus casei in low-fat Italian type salami with added fructooligosaccharides: in vitro screening and technological evaluation. Meat Science, 168: 108186, doi: 10.1016/j.meatsci.2020.108186.
  • Budak Bağdatlı, A., Kundakçı, A. (2013). Fermente et ürünlerinde probiyotik mikroorganizmaların kullanımı. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 9(1): 31-37.
  • Câmara, A.K.F.I., Ozaki, M.M., Santos, M., Vidal, V.A.S., Ribeiro, W.O., Paglarini, C.S., Bernardinelli, O.D., Sabadini, E., Pollonio, M.A.R. (2021). Olive oil-based emulsion gels containing chia (Salvia hispanica L.) mucilage delivering healthy claims to low-saturated fat Bologna sausages. Food Structure, 28: 100187, doi: 10.1016/j.foostr.2021.100187.
  • Campos, T.A.F., de Marins, A.R., da Silva, N.M., Matiucci, M.A., dos Santos, I.C., Alcalde, C.R., de Souza, M.L.R., Gomes, R.G., Feihrmann, A.C. (2022). Effect of the addition of the probiotic Bifidobacterium animalis subsp. lactis (BB-12) in free and microencapsulated form and the prebiotic inulin to synbiotic dry coppa. Food Research International, 158: 111544, doi: 10.1016/ j.foodres.2022.111544.
  • Candan, T., Bağdatlı, A. (2018). Et teknolojisinde alternatif ısıtma yöntemleri. El-Cezerî Fen ve Mühendislik Dergisi, 5(2): 656-670, doi: 10.31202/ecjse.403806.
  • Cason, E.E., Al Hakeem, W.G., Adams, D., Shanmugasundaram, R., Selvaraj, R. (2023). Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. Journal of Applied Poultry Research, 32(2): 100315, doi: 10.1016/j.japr.2022.100315.
  • Cavalheiro, C.P., Ruiz-Capillas, C., Herrero, A.M., Jiménez-Colmenero, F., Pintado, T., de Menezesc, C.R., Fries, L.L.M. (2019). Effect of different strategies of Lactobacillus plantarum incorporation in chorizo sausages. Journal of the Science of Food and Agriculture, 99: 6706–6712, doi: 10.1002/jsfa.9952.
  • Cavalheiro, C.P., Ruiz-Capillas, C., Herrero, A.M., Jimenez-Colmenero, F., Pintado, T., de Menezes, C.R. (2020). Effect of encapsulated Lactobacillus plantarum as probiotic on dry-sausages during chilled storage. International Journal of Food Science and Techonology, 55: 3613–21, doi: 10.1111/ ijfs.14695.
  • Chavan, A.R., Singh, A.K., Gupta, R.K., Nakhate, S.P., Poddar, B.J., Gujar, V.V., Purohit, H.J., Khardenavis, A.A. (2023). Recent trends in the biotechnology of functional non-digestible oligosaccharides with prebiotic potential. Biotechnology and Genetic Engineering Reviews, 1-46, doi: 10.1080/02648725.2022.2152627.
  • Coelho, S.R., Lima, Í.A., Martins, M.L., Benevenuto, J., Augusto, A., de Almeida Torres Filho, R., de Lemos Souza Ramos, A., Ramos, E.M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage. LWT - Food Science and Technology, 102: 254-259, doi: 10.1016/j.lwt.2018.12.045.
  • Correa, A.C., Lopes, M.S., Perna, R.F., Silva, E.K. (2024). Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydrate Polymers, 323: 121396, doi: 10.1016/j.carbpol.2023.121396.
  • Cosme, F., Inês, A., Vilela, A. (2022). Consumer’s acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Research International, 151: 110842, doi: 10.1016/j.foodres.2021.110842.
  • Cruz, B.C.S., Duarte, V.S., Dias, R.S., Bernardes, A.L., de Paula, S.O., Ferreira, C.L.L.F., Peluzio, M.C.G. (2022). Synbiotic modulates intestinal microbiota metabolic pathways and inhibits DMH-induced colon tumorigenesis through c-myc and PCNA suppression. Food Research International, 158: 111379, doi: 10.1016/ j.foodres.2022.111379.
  • Delikanlı, B., Özcan, T. (2014). Probiyotik içeren yenilebilir filmler ve kaplamalar. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 28(2): 59-70.
  • Dong, S., Li, L., Hao, F., Fang, Z., Zhong, R., Wu, J., Fang, X. (2023). Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poultry Science, 22: 103287, doi: 10.1016/j.psj.2023.103287.
  • Erginkaya, Z., Konuray-Altun, G. (2022). Potential biotherapeutic properties of lactic acid bacteria in foods. Food Bioscience, 46: 101544, doi: 10.1016/j.fbio.2022.101544.
  • Felisberto, M.H.F., Galvão, M.T.E.L., Picone, C.S.F., Cunha, R.L., Pollonio, M.A.R. (2015). Effect of prebiotic ingredients on the rheological properties and microstructure of reduced-sodium and low-fat meat emulsions. LWT - Food Science and Technology, 60: 148-155, doi: 10.1016/j.lwt.2014.08.004.
  • Gu, Q., Yin, Y., Yan, X., Liu, X., Liu, F., McClements, D.J. (2022). Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Advances in Colloid and Interface Science, 309: 102781, doi: 10.1016/j.cis.2022.102781.
  • Özünlü, O., Ergezer, H., Gökçe, R. (2019). Sağlıklı et ürünleri geliştirme stratejileri. Pamukkale Universitesi Mühendislik Bilim Dergisi, 25(7): 839-845.
  • Hurtado-Romero, A., Toro-Barbosa, M.D., Garcia-Amezquita, L.E., García-Cayuela, T. (2020). Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology, 104: 117–131, doi: 10.1016/ j.tifs.2020.08.007.
  • Illippangama, A.U., Jayasena, D.D., Jo, C., Mudannayake, D.C. (2022). Inulin as a functional ingredient and their applications in meat products. Carbohydrate Polymers, 275: 118706, doi: 10.1016/j.carbpol.2021.118706.
  • Ishikawa, K., Hasegawa, R., Shibutani, K., Mikami, Y., Kawai, F., Matsuo, T., Uehara, Y., Mori, N. (2023). Probiotic-related Clostridium butyricum bacteremia: A case report and literature review. Anaerobe, 83: 102770, doi: 10.1016/j.anaerobe.2023.102770.
  • İsmailoğlu Ö., Öngün-Yılmaz, H. (2019). Probiyotik kullanımının bağırsak mikrobiyotası üzerine etkisi. Sağlık Bilimleri ve Araştırmaları Dergisi 1(1): 38-56.
  • Jaworska, D., Neffe, K., Kołozyn-Krajewska, D., Dolatowski, Z. (2011). Survival during storage and sensory effect of potential probiotic lactic acid bacteria Lactobacillus acidophilus Bauer and Lactobacillus casei Bif3’/IV in dry fermented pork loins. International Journal of Food Science and Technology, 46: 2491-2497, doi:10.1111/j.1365-2621.2011.02772.x.
  • Jung, J.T., Lee, J., Choi, Y.S., Lee, J.H., Choi, J.S., Choi, Y.I. (2018). Effect of rice bran and wheat fibers on microbiological and physicochemical properties of fermented sausages during ripening and storage. Korean Journal for Food Science of Animal Resources, 38(2): 302-314, doi:10.5851/kosfa.2018.38.2.302.
  • Klinder, A., Forster, A., Caderni, G., Femia, A.P., Pool-Zobel, B.L. (2004). Fecal water genotoxicity is predictive of tumor preventive activities by inulin-like oligofructoses, probiotics (Lactobacillus rhamnosus and Bifidobacterium lactis), and their synbiotic combination. Nutrition and Cancer, 49(2): 144-155, doi: 10.1207/s15327914nc4902_5.
  • Kozan, H.İ., Sarıçoban, C. (2023). Effect of oat bran addition on the survival of selected probiotic strains in Turkish fermented sausage during cold storage. Food Bioscience, 54: 102820, doi: 10.1016/j.fbio.2023.102820.
  • Leonard, W., Hutchings, S.C., Warner, R.D., Fang, Z. (2019). Effects of incorporating roasted lupin (Lupinus angustifolius) flour on the physicochemical and sensory attributes of beef sausage. International Journal of Food Science and Technology, 54(5): 1849–1857, doi: 10.1111/ijfs.14088.
  • Macho-González, A., Bastida, S., Garcimartín, A., López-Oliva, M.E., González, P., Benedí, J., González-Muñoz, M.J., Sánchez-Muniz, F.J. (2021) Functional Meat Products as Oxidative Stress Modulators: A Review. Advances in Nutrition, 12: 1514–1539, doi: 10.1093/advances/nmaa182.
  • Mafra, J.F., Cruz, A.I.C., de Santana, T.S., Ferreira, M.A., Araújo, F.M., Evangelısta-Barreto, N.S. (2021). Probiotic characterization of a commercial starter culture used in the fermentation of sausages. Food Science and Technology, 41(1): 240-246, doi: 10.1590/fst.12120.
  • Manassi, C.F., de Souza, S.S., Hassemer, G.S., Sartor, S., Lima, C.M.G., Miotto, M., Lindner, J.D., Rezzadori, K., Pimentel, T.C., Ramos, G.L.P.A., Esmerino, E., Duarte, M.C.K.H., Marsico, E.T., Verruck, S. (2022). Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Research International, 154: 111035, doi: 10.1016/j.foodres.2022.111035.
  • Manoj, P.M., Mohan, J.R., Khasherao, B.Y., Shams, R., Dash, K.K. (2023). Fruit based probiotic functional beverages: A review. Journal of Agriculture and Food Research, 14: 100729, doi: 10.1016/j.jafr.2023.100729.
  • Manzoor, S., Wani, S.M., Mir, S.A., Rizwan, D. (2022). Role of probiotics and prebiotics in mitigation of different diseases. Nutrition, 96: 111602, doi: 10.1016/j.nut.2022.111602.
  • Nedelcheva, P., Denkova, Z., Denev, P., Slavchev, A., Krastanov, A. (2010) Probiotic strain Lactobacillus plantarum NBIMCC 2415 with antioxidant activity as a starter culture in the production of dried fermented meat products. Biotechnology & Biotechnological Equipment, 24(1): 1624-1630, doi: 10.2478/V10133-010-0016-4.
  • Özbay Doğu, S., Sarıçoban, C. (2015). Probiyotik et ürünleri ve beslenme. Türk Tarım–Gıda Bilim ve Teknoloji Dergisi, 3(4): 183-189, doi: 20.500.12451/1310.
  • Özer, C.O., Kılıç, B., Başyiğit-Kılıç, G. (2016). In-vitro microbial production of conjugated linoleic acid by probiotic L. plantarum strains: Utilization as a functional starter culture in sucuk fermentation. Meat Science, 114: 24-31, doi: 10.1016/j.meatsci.2015.12.005.
  • Paglarini, C.S., Furtado, G.F., Honório, A.R., Mokarzel, L., Vidal, V.A.S., Ribeiro, A.P.B., Cunha, R.L., Pollonio, M.A.R. (2019). Functional emulsion gels as pork back fat replacers in Bologna sausage. Food Structure, 20: 100105, doi: 10.1016/j.foostr.2019.100105.
  • Pérez-Burillo, S., Mehta, T., Pastoriza, S., Kramer, D., Paliy, O., Rufián-Henares, J.Á. (2019). Potential probiotic salami with dietary fiber modulates antioxidant capacity, short-chain fatty acid production and gut microbiota community structure. LWT - Food Science and Technology, 105: 355–362, doi: 10.1016/j.lwt.2019.02.006.
  • Pimentel, T.C., de Assis, B.B.T., Rocha, C.S., Marcolino, V.A., Rosset, M., Magnani, M. (2022). Prebiotics in non-dairy products: Technological and physiological functionality, challenges, and perspectives. Food Bioscience, 46: 101585, doi: 10.1016/j.fbio.2022.101585.
  • Pintado, T., Herrero, A.M., Ruiz-Capillas, C., Triki, M., Carmona P., Jiménez-Colmenero, F. (2015). Effects of emulsion gels containing bioactive compounds on sensorial, technological, and structural properties of frankfurters. Food Science and Technology International, 22(2): 132–145, doi: 10.1177/1082013215577033.
  • Rahman, U., Khan, M.I., Sohaib, M., Sahar, A., Ishaq, A. (2017) Exploiting microorganisms to develop improved functional meat sausages: A review. Food Reviews International, 33(2): 195-215, doi: 10.1080/87559129.2016.1175012.
  • Reque, P.M., Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science & Technology, 114: 1–10, doi: 10.1016/ j.tifs.2021.05.022.
  • Rodrigues, F.J., Cedran, M.F., Bicas, J.L., Sato, H.H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137: 109682, doi: 10.1016/j.foodres.2020.109682.
  • Roselino, M.N., Sakamoto, I.K., Adorno, M.A.T., Canaan, J.M.M., de Valdez, G.F., Rossi, E.A., Sivieri, K., Cavallini, D.C.U. (2020). Effect of fermented sausages with probiotic Enterococcus faecium CRL 183 on gut microbiota using dynamic colonic model. LWT - Food Science and Technology, 132: 109876, doi: 10.1016/j.lwt.2020.109876.
  • Rouhi, M., Sohrabvandi, S., Mortazavian, A.M. (2013). Probiotic fermented sausage: viability of probiotic microorganisms and sensory characteristics. Critical Reviews in Food Science and Nutrition, 53(4): 331-348, doi: 10.1080/ 10408398.2010.531407.
  • Ruiz, J.N., Villanueva, N.D.M., Favaro-Trindade, C.S., Contreras-Castillo, C.J. (2014). Physicochemical, microbiological and sensory assessments of Italian salami. Scientia Agricola, doi: 10.1590/S0103-90162014000300005.
  • Sáez-Orviz, S., Rendueles, M., Díaz, M. (2023). Impact of adding prebiotics and probiotics on the characteristics of edible films and coatings- a review. Food Research International, 164: 112381, doi: 10.1016/j.foodres.2022.112381.
  • Santos, M., Ozaki, M.M., Ribeiro, W.O., Paglarini, C.S., Vidal, V.A.S., Campagnol, P.C.B., Pollonio, M.A.R. (2020). Emulsion gels based on pork skin and dietary fibers as animal fat replacers in meat emulsions: An adding value strategy to byproducts. LWT - Food Science and Technology, 120: 108895, doi: 10.1016/j.lwt.2019.108895.
  • Selani, M.M., Shirado, G.A.N., Margiotta, G.B., Saldaña, E., Spada, F.P., Piedade, S.M.S., Contreras-Castillo, C.J., Canniatti-Brazaca, S.G. (2016). Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger. Meat Science, 112: 69–76, doi: 10.1016/ j.meatsci.2015.10.020.
  • Sirini N. Roldán, A. Lucas-González, R. Fernández-López, J. Viuda-Martos, M. Pérez-Àlvarez, J.A., Frizzo, L.S., Rosmini, M.R. (2020). Effect of chestnut flour and probiotic microorganism on the functionality of dry-cured meat sausages. LWT - Food Science and Technology, 134: 110197, doi: 10.1016/j.lwt.2020.110197.
  • Sirini, N., Stegmayer, M., Ruiz, M.J., Cuffia, F., Rossler, E., Otero, J., Soto, L., Lorenzo, J.M., Pérez-Àlvarez, J.A., Rosmini, M., Frizzo, L. (2023). Applicability of the probiotic Lactiplantibacillus plantarum BFL as an adjunct culture in a dry fermented sausage. Meat Science, 200: 109166, doi: 10.1016/j.meatsci.2023.109166.
  • Slima, S.B., Trabelsi, I., Ktari, N., Kriaa, M., Abdeslam, A., Herrero, A.M., Jiménez-Colmenero, F., Ruiz-Capillas, C., Salah, R.B. (2020). Modeling the influence of functional additives in beef sausages using a Box-Benkhen design: Effects on quality characteristics. Food Bioscience, 35: 100572, doi: 10.1016/j.fbio.2020.100572.
  • Trabelsi, I., Slimaa, S.B., Ktarib, N., Trikic, M., Abdehedid, R., Abazaa, W., Moussac, H., Abdeslame, A., Salaha, R.B. (2019). Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science, 154: 29–36, doi: 10.1016/j.meatsci.2019.04.005.
  • Vasconcelos, L. I. M., da Silva-Buzanello, R. A., Kalschne, D. L., Scremin, F. R., Bittencourt, P. R. S., Dias, J. T. G., Canan, C., Corso, M.P. (2021). Functional fermented sausages incorporated with microencapsulated Lactobacillus plantarum BG 112 in Acrycoat S100. LWT - Food Science and Technology, 148: 111596, doi: 10.1016/ j.lwt.2021.111596.
  • Vasilev, D., Jovetic, M., Vranic, D., Tomovic, V., Jokanovic, M., Dimitrijevic, M., Karabasil, N., Vasiljevic, N. (2016). Quality and microflora of functional fermented sausages enriched with probiotic L.casei LC01 and prebiotic with KCl and CaCl2 as NaCl substitutes. Fleischwirtschaft, 96(2): 96-102.
  • Velázquez-González, F.G., Urquiza-Martínez, M.V., Manhães-de-Castro, R., Romero-Juárez, P.A., Bedolla-Valdez, Z.I., Ponce-Pérez, J.M., Farías-Gaytán, E., Vázquez-Garcidueñas, M.S., Vázquez-Marrufo, G., Toscano, A.E., Torner, L., Pérez-Villarreal, J., Guzmán-Quevedo, O. (2023). Chronic consumption of avocado seed (Persea americana) promotes a negative energy balance and body weight reduction in high-fat diet exposed mice: Implications for functional foods. Journal of Functional Foods, 108: 105751, doi: 10.1016/ j.jff.2023.105751.
  • Yu, D., Feng, M., Sun, J. (2020). Influence of mixed starters on the degradation of proteins and the formation of peptides with antioxidant activities in dry fermented sausages. Food Control, 123: 1-9, doi: 10.1016/j.foodcont.2020.107743.
  • Yuca, B., Topçu, İ., Yağcılar-Aydemir, H., Özer, C.O., Kılıç, B., Başyiğit-Kılıç, G. (2019). Effects of beta-glucan addition on the physicochemical and microbiological characteristics of fermented sausage. Journal of Food Science and Technology, 56(7): 3439-3448, doi: 10.1007/s13197-019-03830-6.
  • Zhou, H., Zhuang, X., Zhou, C., Ding, D., Li, C., Bai, Y. (2020). Effect of fermented blueberry on the oxidative stability and volatile molecule profiles of emulsion-type sausage during refrigerated storage. Asian-Australasian Journal of Animal Sciences, 33(5): 812–824, doi: 10.5713/ajas.19.0094.
  • Zhou, L., Han, F., Lu, K., Qiao, Y., Li E. (2023) Comparative study on prebiotic effects of different types of prebiotics in an in vitro fermentation by gut microbiota of shrimp (Litopenaeus vannamei). Aquaculture, 574: 739687, doi: 10.1016/j.aquaculture.2023.739687.
  • Zhuang, H., Li, X., Wu, S., Zhao, J., Gao, Y., Yan, H. (2022), Application of ginseng powder and combined starter culture for improving the oxidative stability, microbial safety and quality characteristics of sausages. LWT - Food Science and Technology, 166: 113749, doi: 10.1016/ j.lwt.2022.113749.
  • Xie, A., Zhao, S., Liu, Z., Yue, X.,Shao, J., Li, M., Li, Z. (2023). Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. International Journal of Biological Macromolecules, 242: 124784, doi: 10.1016/j.ijbiomac.2023.124784.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering, Meat Technology, Food Microbiology
Journal Section Articles
Authors

Tuba Nuriler 0000-0002-7836-9145

Müge Uyarcan 0000-0003-1474-672X

Publication Date February 14, 2024
Published in Issue Year 2024 Volume: 49 Issue: 1

Cite

APA Nuriler, T., & Uyarcan, M. (2024). FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER. Gıda, 49(1), 25-38. https://doi.org/10.15237/gida.GD23111
AMA Nuriler T, Uyarcan M. FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER. The Journal of Food. February 2024;49(1):25-38. doi:10.15237/gida.GD23111
Chicago Nuriler, Tuba, and Müge Uyarcan. “FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER”. Gıda 49, no. 1 (February 2024): 25-38. https://doi.org/10.15237/gida.GD23111.
EndNote Nuriler T, Uyarcan M (February 1, 2024) FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER. Gıda 49 1 25–38.
IEEE T. Nuriler and M. Uyarcan, “FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER”, The Journal of Food, vol. 49, no. 1, pp. 25–38, 2024, doi: 10.15237/gida.GD23111.
ISNAD Nuriler, Tuba - Uyarcan, Müge. “FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER”. Gıda 49/1 (February 2024), 25-38. https://doi.org/10.15237/gida.GD23111.
JAMA Nuriler T, Uyarcan M. FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER. The Journal of Food. 2024;49:25–38.
MLA Nuriler, Tuba and Müge Uyarcan. “FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER”. Gıda, vol. 49, no. 1, 2024, pp. 25-38, doi:10.15237/gida.GD23111.
Vancouver Nuriler T, Uyarcan M. FONKSİYONEL ET ÜRÜNLERİNİN ÜRETİMİNDE PROBİYOTİK, PREBİYOTİK VE SİNBİYOTİK KULLANIMINA YÖNELİK YENİ EĞİLİMLER. The Journal of Food. 2024;49(1):25-38.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/