Research Article
BibTex RIS Cite

Ferritik Çeliklerde Kırılma Tokluğunun Saptanmasında Farklı Bir Yaklaşım

Year 2020, Volume: 10 Issue: 4, 887 - 899, 15.10.2020
https://doi.org/10.17714/gumusfenbil.704032

Abstract

Günümüzde, malzeme seçimi, geleneksel olarak malzemenin akma
dayanımına göre yapılmaktadır. Ancak burada, parça dizaynı veya geometrik
unsurlardan kaynaklanan gerilim konsantrasyonları dikkate alınmamaktadır. Bu
şartların değerlendirilmesi, sadece malzemenin kırılma tokluğu ile mümkündür.
Kırılma tokluğunun saptanmasında, metalik malzemeler için, ASTM E-399 standardı
geliştirilmiştir. Bu standart uyarınca, düzlemsel deformasyon durumuna (gevrek
kırılma) uygun olarak hazırlanmış olan numuneler test edilir. Özellikle
ferritik çeliklerde, bu durum büyük boyutlu numuneler üzerinde deney
yapılmasını gerektirir ve böylece söz konusu çeliklerin kırılma tokluğunun
saptanması zorlaşır. Bununla birlikte, bazı alternatif yöntemler
geliştirilmiştir. Başlıca yöntemler, J-İntegral ve COD yöntemleridir.
J-İntegral yönteminin yüksek toleransının sınır şartlarını belirlemek için ASTM
E-1921 standardı geliştirilmiş ve Master Curve (MC) kavramı ortaya atılmıştır.
Bu yöntemlerin olumsuz yanı, oldukça yüksek tolerans göstermesidir. Bu çalışmada,
kırılma tokluğunun saptanmasında yeni bir yöntem incelenmiş ve literatürde yapılmış
çalışmalar derlenerek, yeni bir yaklaşım ile yöntemin geliştirilmesi
amaçlanmıştır.

Supporting Institution

Afyon Kocatepe Üniversitesi

Project Number

17.TEKNOLOJİ.02

Thanks

Bu çalışma, 17.TEKNOLOJİ.02 proje numarası ve “Ferritik Çeliklerde Kırılma Tokluğunun Saptanmasında Farklı Bir Yaklaşım” ismiyle Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyonu (BAPK) tarafından desteklenmiştir.

References

  • ASTM E1921-18, 2018. Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range, in: ASTM Volume 03.01 Metals – Mechanical Testing; Elevated and Low-Temperature Tests; Metallography: West Conshohocken, PA: ASTM International.
  • ASTM E399-17, 2017. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, in: ASTM Volume 03.01 Metals – Mechanical Testing; Elevated and Low-Temperature Tests; Metallography: West Conshohocken, PA: ASTM International.
  • Aytekin, H., 2005. Yapı Çeliklerinin Kırılma Tokluğu Üzerine Bir Çalışma. Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afyonkarahisar.
  • Aytekin, H., 2009. Yapı Çeliklerinin Kırılma Tokluğunun Saptanmasında Yeni Bir Yöntemin Geliştirilmesi. Doktora Tezi, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afyonkarahisar.
  • Aytekin, H., 2014. A Study on the ASTM E1921 Standard in Determining the Fracture Toughness of Ferritic Steels. Fatigue & Fracture of Engineering Materials & Structures, 37(8), 920–927.
  • Berejnoi, C. ve Ipiña, J.E.P., 2016. Fracture Toughness of Ferritic Steels in the Ductile-to-Brittle Transition Region, in: Fracture Mechanics - Properties, Patterns and Behaviours: InTech, pp. 83-101.
  • Bouchard, R., Shen, G. ve Tyson, W.R., 2008. Fracture Toughness Variability of Structural Steel. Engineering Fracture Mechanics, 75(12), 3735–3742.
  • Broek, D., 1982. Elementary Engineering Fracture Mechanics: Springer Netherlands, 469 p.
  • Burdekin, F.M. ve Stone, D.E.W., 1966. The Crack Opening Displacement Approach to Fracture Mechanics in Yielding Materials. The Journal of Strain Analysis for Engineering Design, 1(2), 145–153.
  • EricksonKirk, M. ve EricksonKirk, M., 2006. An Upper-Shelf Fracture Toughness Master Curve for Ferritic Steels. International Journal of Pressure Vessels and Piping, 83(8), 571–583.
  • Gdoutos, E.E., 1993. J-integral and Crack Opening Displacement Fracture Criteria, in: Fracture Mechanics: pp. 153–193.
  • IAEA, 2009. Master Curve Approach to Monitor Fracture Toughness of Reactor Pressure Vessels in Nuclear Power Plants: International Atomic Energy Agency, ISBN 978-92-0-111009-1, Vienna, 167 p.
  • Krasovs’kyi, A.Y., 2006. On the “Local Approach” to the Brittle Fracture of Structural Materials. Materials Science, 42(2), 183–188.
  • Krasowsky, A.J., 1980. Brittleness of Metals at Low Temperatures: Naukova Dumka, Kyiv, (in Russian).
  • Krasowsky, A.J., Kashtalyan, Y.A. ve Krasiko, V.N., 1983. Brittle-to-Ductile Transition in Steels and the Critical Transition Temperature. International Journal of Fracture, 23(4), 297–315.
  • McCabe, D., Merkle, J. ve Wallin, K., 2000. Technical Basis for the Master Curve Concept of Fracture Toughness Evaluations in the Transition Range, Fatigue and Fracture Mechanics: 30th Volume, ASTM International, p. 21–33.
  • Pan, J., Chen, Z. ve Hong, Z., 2019. A Novel Method to Estimate the Fracture Toughness of Pressure Vessel Ferritic Steels in the Ductile to Brittle Transition Region Using Finite Element Analysis and Master Curve Method. International Journal of Pressure Vessels and Piping, 176, 1–11.
  • Planman, T., Onizawa, K., Server, W. ve Rosinski, S., 2007. IAEA Coordinated Research Project on Master Curve Approach to Monitor Fracture Toughness of RPV Steels: Applicability for Highly Embrittled Materials, ASME Pressure Vessels and Piping Division Conference, July 2007, San Antonio, Texas, p. 201–209.
  • Rice, J.R., 1964. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, Transactions ASME, 35(2), 379–388.
  • Said, G., 2006. Study on ASTM E399 and ASTM E1921 Standards. Fatigue & Fracture of Engineering Materials & Structures, 29(8), 606–614.
  • Said, G. ve Aytekin, H., 2013. A New Method for Determining the Fracture Toughness of Main Pipeline Steels. Fatigue & Fracture of Engineering Materials & Structures, 36(7), 640–649.
  • Said, G. ve Tasgetiren, S., 2004. An Express Technique for the Determination of Static and Dynamic Fracture Toughness (KIC, Kıd) of BCC Metals and Alloys. Mechanics of Materials, 36(11), 1129–1142.
  • Said, G. ve Taşgetiren, S., 2000. Fracture Toughness Determination of Low-Alloy Steels by Thermoactivation Energy Method. Engineering Fracture Mechanics, 67(4), 345–356.
  • Saidov, G.I., 1986. Theoretical-Experimental Determination of Critical Stresses in Structural Elements. Strength of Materials, 18(2), 171–173.
  • Saidov, G.I., 1987. Thermal Activation Parameters of Deformation and the Critical Stress Intensity Factor of Low and Medium Strength Steels. Soviet Materials Science, 22(5), 495–499.
  • Saidov, G.I., 1990. Temperature Relationships of Static and Dynamic Crack Resistance of Low and Medium Strength Constructional Steels. Metal Science and Heat Treatment, 32(4), 299–302.
  • Saidov, G.I., 1997. A Thermal Activation Approach to the Crack Resistance of Steels. Fatigue & Fracture of Engineering Materials & Structures, 20(1), 41–47.
  • Saidov, G.I. ve Seleznyova, T.A., 1997. On the Fracture Toughness of Low and Medium Strength Steels (BCC Metals). Strength of Materials, 29(2), 204–207.
  • Saıd, G. ve Talas, S., 2004. The Relationship Between Brittle Fracture Temperature and Stress Concentration in BCC Steels. Mechanics of Materials, 36(11), 1123–1128.
  • Schindler, H.-J. ve Kalkhof, D., 2015. A Closer Look at Effects of the Loading Rate on Fracture Toughness in the Ductile-to-Brittle Transition Regime of a Ferritic Steel. Journal of Testing and Evaluation, 43(3), 507–516.
  • Schindler, H.J., 2014. Fracture Toughness of Ferritic Steels: Lower Bounds and Their Implications on Testing and Application. Procedia Engineering, 86, 247–257.
  • Serensen, S. V. ve Makhutov, N.A., 1971. Resistance of Construction Elements to Brittle Failure. Strength of Materials, 3(4), 371–381.
  • Ulu, S., Aytekin, H. ve Said, G., 2013. An Alternative Approach to the Fracture Toughness of Dual Phase Steels. Strength of Materials, 45(5), 607–618.
  • Yaroshevich, V.D. ve Ryvkina, D.G., 1970. On the Thermoactivation Character of Plastic Deformation of Metals. Fizika Tverdogo Tela (Solid State Physics), 12(2), 464–477, (in Russian).

A Different Approach to the Determination of the Fracture Toughness in Ferritic Steels

Year 2020, Volume: 10 Issue: 4, 887 - 899, 15.10.2020
https://doi.org/10.17714/gumusfenbil.704032

Abstract

Nowadays, the material
selection is conventionally made according to the yield strength of the
material. However, stress concentrations from geometric factors or component
design are not considered. The evaluation of these conditions is only possible
with fracture toughness of the materials. ASTM E-399 has been developed for the
determination of fracture toughness of the metallic materials. According to
this standard, samples suitable to the plane deformation (brittle fracture) are
tested. Especially in ferritic steels, this condition requires testing on
large-sized samples, and thus, it is difficult to determine the fracture
toughness of these steels. However, some alternative methods have been
developed into this standard. The major methods are J-integral and COD methods.
ASTM E-1921 standard was developed in order to determine the boundary
conditions of the high tolerance of J-integral method, and Master Curve (MC)
concept was proposed. The disadvantage of these methods is that they show quite
high tolerance. In this study, a new method has been investigated in the
determination of the fracture toughness. The similar studies in the literature
have been compiled, and developing of the method with a new approach was
purposed.

Project Number

17.TEKNOLOJİ.02

References

  • ASTM E1921-18, 2018. Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range, in: ASTM Volume 03.01 Metals – Mechanical Testing; Elevated and Low-Temperature Tests; Metallography: West Conshohocken, PA: ASTM International.
  • ASTM E399-17, 2017. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, in: ASTM Volume 03.01 Metals – Mechanical Testing; Elevated and Low-Temperature Tests; Metallography: West Conshohocken, PA: ASTM International.
  • Aytekin, H., 2005. Yapı Çeliklerinin Kırılma Tokluğu Üzerine Bir Çalışma. Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afyonkarahisar.
  • Aytekin, H., 2009. Yapı Çeliklerinin Kırılma Tokluğunun Saptanmasında Yeni Bir Yöntemin Geliştirilmesi. Doktora Tezi, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afyonkarahisar.
  • Aytekin, H., 2014. A Study on the ASTM E1921 Standard in Determining the Fracture Toughness of Ferritic Steels. Fatigue & Fracture of Engineering Materials & Structures, 37(8), 920–927.
  • Berejnoi, C. ve Ipiña, J.E.P., 2016. Fracture Toughness of Ferritic Steels in the Ductile-to-Brittle Transition Region, in: Fracture Mechanics - Properties, Patterns and Behaviours: InTech, pp. 83-101.
  • Bouchard, R., Shen, G. ve Tyson, W.R., 2008. Fracture Toughness Variability of Structural Steel. Engineering Fracture Mechanics, 75(12), 3735–3742.
  • Broek, D., 1982. Elementary Engineering Fracture Mechanics: Springer Netherlands, 469 p.
  • Burdekin, F.M. ve Stone, D.E.W., 1966. The Crack Opening Displacement Approach to Fracture Mechanics in Yielding Materials. The Journal of Strain Analysis for Engineering Design, 1(2), 145–153.
  • EricksonKirk, M. ve EricksonKirk, M., 2006. An Upper-Shelf Fracture Toughness Master Curve for Ferritic Steels. International Journal of Pressure Vessels and Piping, 83(8), 571–583.
  • Gdoutos, E.E., 1993. J-integral and Crack Opening Displacement Fracture Criteria, in: Fracture Mechanics: pp. 153–193.
  • IAEA, 2009. Master Curve Approach to Monitor Fracture Toughness of Reactor Pressure Vessels in Nuclear Power Plants: International Atomic Energy Agency, ISBN 978-92-0-111009-1, Vienna, 167 p.
  • Krasovs’kyi, A.Y., 2006. On the “Local Approach” to the Brittle Fracture of Structural Materials. Materials Science, 42(2), 183–188.
  • Krasowsky, A.J., 1980. Brittleness of Metals at Low Temperatures: Naukova Dumka, Kyiv, (in Russian).
  • Krasowsky, A.J., Kashtalyan, Y.A. ve Krasiko, V.N., 1983. Brittle-to-Ductile Transition in Steels and the Critical Transition Temperature. International Journal of Fracture, 23(4), 297–315.
  • McCabe, D., Merkle, J. ve Wallin, K., 2000. Technical Basis for the Master Curve Concept of Fracture Toughness Evaluations in the Transition Range, Fatigue and Fracture Mechanics: 30th Volume, ASTM International, p. 21–33.
  • Pan, J., Chen, Z. ve Hong, Z., 2019. A Novel Method to Estimate the Fracture Toughness of Pressure Vessel Ferritic Steels in the Ductile to Brittle Transition Region Using Finite Element Analysis and Master Curve Method. International Journal of Pressure Vessels and Piping, 176, 1–11.
  • Planman, T., Onizawa, K., Server, W. ve Rosinski, S., 2007. IAEA Coordinated Research Project on Master Curve Approach to Monitor Fracture Toughness of RPV Steels: Applicability for Highly Embrittled Materials, ASME Pressure Vessels and Piping Division Conference, July 2007, San Antonio, Texas, p. 201–209.
  • Rice, J.R., 1964. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, Transactions ASME, 35(2), 379–388.
  • Said, G., 2006. Study on ASTM E399 and ASTM E1921 Standards. Fatigue & Fracture of Engineering Materials & Structures, 29(8), 606–614.
  • Said, G. ve Aytekin, H., 2013. A New Method for Determining the Fracture Toughness of Main Pipeline Steels. Fatigue & Fracture of Engineering Materials & Structures, 36(7), 640–649.
  • Said, G. ve Tasgetiren, S., 2004. An Express Technique for the Determination of Static and Dynamic Fracture Toughness (KIC, Kıd) of BCC Metals and Alloys. Mechanics of Materials, 36(11), 1129–1142.
  • Said, G. ve Taşgetiren, S., 2000. Fracture Toughness Determination of Low-Alloy Steels by Thermoactivation Energy Method. Engineering Fracture Mechanics, 67(4), 345–356.
  • Saidov, G.I., 1986. Theoretical-Experimental Determination of Critical Stresses in Structural Elements. Strength of Materials, 18(2), 171–173.
  • Saidov, G.I., 1987. Thermal Activation Parameters of Deformation and the Critical Stress Intensity Factor of Low and Medium Strength Steels. Soviet Materials Science, 22(5), 495–499.
  • Saidov, G.I., 1990. Temperature Relationships of Static and Dynamic Crack Resistance of Low and Medium Strength Constructional Steels. Metal Science and Heat Treatment, 32(4), 299–302.
  • Saidov, G.I., 1997. A Thermal Activation Approach to the Crack Resistance of Steels. Fatigue & Fracture of Engineering Materials & Structures, 20(1), 41–47.
  • Saidov, G.I. ve Seleznyova, T.A., 1997. On the Fracture Toughness of Low and Medium Strength Steels (BCC Metals). Strength of Materials, 29(2), 204–207.
  • Saıd, G. ve Talas, S., 2004. The Relationship Between Brittle Fracture Temperature and Stress Concentration in BCC Steels. Mechanics of Materials, 36(11), 1123–1128.
  • Schindler, H.-J. ve Kalkhof, D., 2015. A Closer Look at Effects of the Loading Rate on Fracture Toughness in the Ductile-to-Brittle Transition Regime of a Ferritic Steel. Journal of Testing and Evaluation, 43(3), 507–516.
  • Schindler, H.J., 2014. Fracture Toughness of Ferritic Steels: Lower Bounds and Their Implications on Testing and Application. Procedia Engineering, 86, 247–257.
  • Serensen, S. V. ve Makhutov, N.A., 1971. Resistance of Construction Elements to Brittle Failure. Strength of Materials, 3(4), 371–381.
  • Ulu, S., Aytekin, H. ve Said, G., 2013. An Alternative Approach to the Fracture Toughness of Dual Phase Steels. Strength of Materials, 45(5), 607–618.
  • Yaroshevich, V.D. ve Ryvkina, D.G., 1970. On the Thermoactivation Character of Plastic Deformation of Metals. Fizika Tverdogo Tela (Solid State Physics), 12(2), 464–477, (in Russian).
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Halil Aytekin 0000-0003-3281-3703

Yelda Akçin 0000-0003-3474-8722

Melih Özçatal 0000-0002-0831-9038

Project Number 17.TEKNOLOJİ.02
Publication Date October 15, 2020
Submission Date March 15, 2020
Acceptance Date July 10, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Aytekin, H., Akçin, Y., & Özçatal, M. (2020). Ferritik Çeliklerde Kırılma Tokluğunun Saptanmasında Farklı Bir Yaklaşım. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 887-899. https://doi.org/10.17714/gumusfenbil.704032