Review
BibTex RIS Cite

Cıva Maruziyetinin Nörodejeneratif Hastalıklar Üzerindeki Etkisi: Geleneksel Derleme

Year 2024, Volume: 44 Issue: 1, 62 - 74, 01.03.2024
https://doi.org/10.52794/hujpharm.1353188

Abstract

Çevre kirliliği nedeniyle insanlar günlük yaşamlarında cıva da dahil olmak üzere çeşitli ağır metallere maruz kalmaktadır. Cıva doğada yaygın olarak bulunur ve termometrelerde, barometrelerde, diş dolgularında kullanılır. Toksik bir ağır metaldir ve farklı mekanizmalarla toksik etkileri olan üç farklı formda bulunur. Cıvaya maruz kalınması proteinlerin yapısında bozulma, reaktif oksijen türlerinde artma ve enzim inhibisyonu gibi çeşitli toksik etkilere yol açar. Nörodejeneratif bozuklukların, kusurlu protein yıkımı ve agregasyonu, oksidatif stres ve serbest radikal oluşumu ile ilgili mitokondriyal işlev bozukluğu ve metal toksisitesi nedeniyle ortaya çıktığı ileri sürülmektedir. Cıva ve bileşiklerinin nörodejeneratif hastalıklara neden olduğuna dair çeşitli kanıtlar vardır. Cıva maruziyeti nedeniyle DNA parçalanması ve nöronların bütünlüğünün bozulması gibi toksik etkiler gözlenebilir. Nöronların ciddi şekilde hasar görmesi nöronal kayıplara neden olurken, nöronal kayıplar nörodejeneratif hastalıkların görülmesini kaçınılmaz kılmaktadır. Bu derlemede, başlıca nörodejeneratif hastalıklardan Alzheimer hastalığı, Parkinson hastalığı, amyotrofik lateral skleroz ve multipl skleroz hastalıklarının cıva maruziyeti ile ilişkili olup olmadığı konusunda yapılan araştırmalar özetlenmiştir. Çalışmalar, cıva maruziyetinin başta Alzheimer hastalığı olmak üzere tüm nörodejeneratif hastalıklarla ilişkili olabileceğini göstermiştir. Özetle, cıvanın nörodejenerasyon ve buna bağlı patolojik durumlar ile ilişkili olabileceği ifade edilebilir.

References

  • 1. PubChem. PubChem Element Summary for AtomicNumber 80, Mercury [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004. [cited October 2023]. Available from: https://pubchem.ncbi.nlm.nih.gov/element/Mercury
  • 2. USEPA. How People are Exposed to Mercury [Internet]. The United States Environmental Protection Agency; 2023. [cited October 2023]. Available from: https://www.epa.gov/mercury/how-people-are-exposed-mercury.
  • 3. Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep. 2023;10:498-508. https://doi.org/10.1016/j.toxrep.2023.04.009
  • 4. Sharma BM, Sáňka O, Kalina J, Scheringer M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environment international. 2019;125:300-19. https://doi.org/10.1016/j.envint.2018.12.016
  • 5. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol. 2003;18(3):149-75. https://doi.org/10.1002/tox.10116
  • 6. Yiğit V, Müftügil N. Bazı balık türlerinde saptanan civa miktarları. Gıda. 1985;10(1):53-56.
  • 7. Yavuz CI. Environmental mercury exposure and health effects. Turkish Journal of Public Health. 2020;18(2):204-17. https://doi.org/10.20518/tjph.554605
  • 8. Fernandes Azevedo B, Barros Furieri L, Pecanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simoes M, et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. 2012;2012:949048. https://doi.org/10.1155/2012/949048
  • 9. Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36(8):609-62. https://doi.org/10.1080/10408440600845619
  • 10. Özbolat G, Abdullah T. Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi. 2016;25(4):502-21. https://doi.org/10.17827/aktd.253562
  • 11. Hacioğlu C, Kar F, Kanbak G. Chronic mercury exposure: oxidative stress and neurotoxicity. Biological Diversity and Conservation. 2017;10(3):58-64.
  • 12. Brookes N, Kristt DA. Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J Neurochem. 1989;53(4):1228-37. https://doi.org/10.1111/j.1471 4159.1989.tb07419.x
  • 13. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med. 2003;349(18):1731-7. https://doi.org/10.1056/NEJMra022471
  • 14. Clarkson TW, Vyas JB, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med. 2007;50(10):757-64. https://doi.org/10.1002/ajim.20476
  • 15. Halbach S, Vogt S, Kohler W, Felgenhauer N, Welzl G, Kremers L, et al. Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: interaction of Hg species in erythrocytes. Environ Res. 2008;107(1):69-78. https://doi.org/10.1016/j.envres.2007.07.005
  • 16. Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997;19(6):417-28. https://doi.org/10.1016/s0892-0362(97)00097-4
  • 17. Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012;45(6):344-52. https://doi.org/10.3961/jpmph.2012.45.6.344
  • 18. Von Burg R. Inorganic mercury. J Appl Toxicol. 1995;15(6):483-93. https://doi.org/10.1002/jat.2550150610
  • 19. Houston MC. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med. 2007;13(2):128-133. https://doi.org/10.1111/j.1751-7176.2011.00489.x
  • 20. Dürer TS. Amalgam Dolgular. Bilimsel Tamamlayıcı Tıp Regülasyon ve Nöral Terapi Dergisi. 2017; 11(3):26-31.
  • 21. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021;12:643972. https://doi.org/10.3389/fphar.2021.643972
  • 22. Pyatha S, Kim H, Lee D, Kim K. Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants (Basel).2022;11(12):2467. https://doi.org/10.3390/antiox11122467
  • 23. Fujimura M, Usuki F. Cellular Conditions Responsible for Methylmercury-Mediated Neurotoxicity. Int J Mol Sci. 2022;23(13):7218. https://doi.org/10.3390/ijms23137218
  • 24. Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res. 2021;1752:147234. https://doi.org/10.1016/j.brainres. 2020.147234
  • 25. Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Inhibition of p38 Mitogen-Activated Protein Kinases Attenuates Methylmercury Toxicity in SH-SY5Y Neuroblastoma Cells. Biol Pharm Bull. 2023;46(9):1203-10. https://doi.org/10.1248/bpb.b23-00014
  • 26. Kim BM, Choi AL, Ha EH, Pedersen L, Nielsen F, Weihe P, et al. Corrigendum to ‘Effect of hemoglobin adjustment on the precision of mercury concentrations in maternal and cord blood’ [Environ. Res. 132 (2014) 407-412]. Environ Res. 2016;147:630. https://doi.org/10.1016/j.envres.2016.01.015
  • 27. Heng YY, Asad I, Coleman B, Menard L, Benki-Nugent S, Hussein Were F, et al. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS One. 2022;17(3):e0265536. https://doi. org/10.1371/journal.pone.0265536
  • 28. Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, et al. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere. 2023;319:137917. https://doi.org/10.1016/j.chemosphere.2023.137917
  • 29. Ponce RA, Kavanagh TJ, Mottet NK, Whittaker SG, Faustman EM. Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol. 1994;127(1):83-90. https://doi.org/10.1006/taap.1994.1142
  • 30. Llop S, Engstrom K, Ballester F, Franforte E, Alhamdow A, Pisa F, et al. Polymorphisms in ABC transporter genes and concentrations of mercury in newborns--evidence from two Mediterranean birth cohorts. PLoS One. 2014;9(5):e97172. https://doi.org/10.1371/journal.pone.0097172
  • 31. Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strahle U. Toxicity of mercury: Molecular evidence. Chemosphere. 2020;245:125586. https://doi.org/10.1016/j.chemosphere.2019.125586
  • 32. Gundacker C, Wittmann KJ, Kukuckova M, Komarnicki G, Hikkel I, Gencik M. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ Res. 2009;109(6):786-96. https://doi.org/10.1016/j.envres.2009.05.003
  • 33. Woods JS, Heyer NJ, Russo JE, Martin MD, Farin FM. Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children’s Amalgam clinical trial. Neurotoxicology. 2014;44:288-302. https://doi.org/10.1016/j.neuro.2014.07.010
  • 34. Ijomone OM, Ijomone OK, Iroegbu JD, Ifenatuoha CW, Olung NF, Aschner M. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology. 2020;81:51-65. https://doi.org/10.1016/j.neuro.2020.08.005
  • 35. Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem. 2008;106(3):1378-87. https://doi.org/10.1111/j.1471-4159.2008.05484.x
  • 36. Bose R, Onishchenko N, Edoff K, Janson Lang AM, Ceccatelli S. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicol Sci. 2012;130(2):383-90. https://doi.org/10.1093/toxsci/kfs257
  • 37. Xu X, Li Y-F, Zhao J, Li Y, Lin J, Li B, et al. Nanomaterial-based approaches for the detection and speciation of mercury. Analyst. 2015;140(23):7841-53. https://doi.org/10.1039/c5an01519g
  • 38. Cheng Z, Wei J, Gu L, Zou L, Wang T, Chen L, et al. DNAzyme-based biosensors for mercury (II) detection: Rational construction, advances and perspectives. J Hazard Mater. 2022;431:128606. https://doi.org/10.1016/j.jhazmat.2022.128606
  • 39. Chen J, Chakravarty P, Davidson GR, Wren DG, Locke MA, Zhou Y, et al. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry. Anal Chim Acta. 2015;871:9-17. https://doi.org/10.1016/j.aca.2015.03.011
  • 40. Giacomino A, Ruo Redda A, Caligiuri R, Inaudi P, Squadrone S, Abete MC, et al. Development of an easy portable procedure for on-site determination of mercury and methylmercury. Food Chem. 2021;342:128347. https://doi.org/10.1016/j.foodchem.2020.128347
  • 41. Windmöller CC, Silva NC, Morais Andrade PH, Mendes LA, Magalhães do Valle C. Use of a direct mercury analyzer® for mercury speciation in different matrices without sample preparation. Analytical Methods. 2017;9(14):2159-67. https://doi.org/10.1039/C6AY03041F
  • 42. Agrawal M, Biswas A. Molecular diagnostics of neurodegenerative disorders. Front Mol Biosci. 2015;2:54. https://doi.org/10.3389/fmolb.2015.00054
  • 43. Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front Toxicol. 2022;4:837579. https://doi.org/10.3389/ftox.2022.837579
  • 44. Bjorklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol. 2022;96(12):3175-99. https://doi.org/10.1007/s00204-022-03366-3
  • 45. Li LX, Chu JH, Chen XW, Gao PC, Wang ZY, Liu C, Fan RF. Selenium ameliorates mercuric chloride-induced brain damage through activating BDNF/TrKB/PI3K/AKT and inhibiting NF-kappaB signaling pathways. J Inorg Biochem. 2022;229:111716. https://doi.org/10.1016/j.jinorgbio.2022.111716
  • 46. Branco V, Carvalho L, Barboza C, Mendes E, Cavaco A, Carvalho C. Selenium and Redox Enzyme Activity in Pregnant Women Exposed to Methylmercury. Antioxidants (Basel). 2022;11(11):2291. https://doi.org/10.3390/antiox11112291
  • 47. El-Sewify IM, Radwan A, Elghazawy NH, Fritzsche W, Azzazy HME. Optical chemosensors for environmental monitoring of toxic metals related to Alzheimer’s disease. RSC Adv. 2022;12(50):32744-55. https://doi.org/10.1039/d2ra05384e
  • 48. Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology. 2004;62(11):1984-9. https://doi.org/10.1212/01.wnl.0000129697.01779.0a
  • 49. Elonheimo HM, Andersen HR, Katsonouri A, Tolonen H. Environmental Substances Associated with Alzheimer’s Disease-A Scoping Review. Int J Environ Res Public Health. 2021;18(22):11839.https://doi.org/10.3390/ijerph182211839
  • 50. Siblerud R, Mutter J, Moore E, Naumann J, Walach H. A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer’s Disease. Int J Environ Res Public Health. 2019;16(24):5152. https://doi.org/10.3390/ijerph16245152
  • 51. Drasch G, Schupp I, Riedl G, Günther G. Einfluß von Amalgamfüllungen auf die. Quecksilberkonzentration in menschlichen Organen. Dtsch Zahnärztl Z 1992;47:490-6. https://doi.org/10.1007/978-3-642-79156-7_48
  • 52. Guzzi G, Grandi M, Cattaneo C, Calza S, Minoia C, Ronchi A, et al. Dental amalgam and mercury levels in autopsy tissues: food for thought. Am J Forensic Med Pathol. 2006;27(1):42-5. https://doi.org/10.1097/01.paf.0000201177.62921.c8
  • 53. Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H. Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuroendocrinology Letters. 2004;25(5):331-9.
  • 54. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A. 2006;103(15):5644-51. https://doi.org/10.1073/pnas.0600549103
  • 55. Çilingir O, Adapinar BDÖ, Aras BD, Gökalp EE, Özkan S, Arslan S, et al. Türk Popülasyonunda APOE Polimorfizmleri ve Alzheimer Hastalığı Arasındaki İlişki. Osmangazi Tıp Dergisi. 2020;42(2):222-30. https://doi.org/10.20515/otd.553900
  • 56. Olivieri G, Brack C, Muller-Spahn F, Stahelin HB, Herrmann M, Renard P, et al. Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem. 2000;74(1):231-6. https://doi.org/10.1046/j.1471-4159.2000.0740231.x
  • 57. Fujimura M, Usuki F, Sawada M, Takashima A. Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. Neurotoxicology. 2009;30(6):1000-7. https://doi.org/10.1016/j.neuro.2009.08.001
  • 58. Hoffman HI, Bradley WG, Chen CY, Pioro EP, Stommel EW, Andrew AS. Amyotrophic Lateral Sclerosis Risk, Family Income, and Fish Consumption Estimates of Mercury and Omega- 3 PUFAs in the United States. Int J Environ Res Public Health. 2021;18(9):4528.https://doi.org/10.3390/ijerph18094528
  • 59. Cariccio VL, Sama A, Bramanti P, Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res. 2019;187(2):341-56. https://doi.org/10.1007/s12011-018-1380-4
  • 60. Schwarz S, Husstedt I, Bertram HP, Kuchelmeister K. Amyotrophic lateral sclerosis after accidental injection of mercury. J Neurol Neurosurg Psychiatry. 1996;60(6):698. https://doi.org/10.1136/jnnp.60.6.698
  • 61. Johnson FO, Atchison WD. The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology. 2009;30(5):761-5. https://doi.org/10.1016/j.neuro.2009.07.010
  • 62. Arvidson B. Inorganic mercury is transported from muscular nerve terminals to spinal and brainstem motoneurons. Muscle Nerve. 1992;15(10):1089-94. https://doi.org/10.1002/mus.880151006
  • 63. Rustam H, Von Burg R, Amin-Zaki L, El Hassani S. Evidence for a neuromuscular disorder in methylmercury poisoning. Arch Environ Health. 1975;30(4):190-5. https://doi.org/10.1080/00039896.1975.10666674
  • 64. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY, et al. Methylmercury poisoning in Iraq. Science. 1973;181(4096):230-41. https://doi.org/10.1126/science.181.4096.230
  • 65. Mahaffey KR, Clickner RP, Bodurow CC. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect. 2004;112(5):562-70. https://doi.org/10.1289/ehp.6587
  • 66. Sarihi S, Niknam M, Mahjour S, Hosseini-Bensenjan M, Moazzen F, Soltanabadi S, Akbari H. Toxic heavy metal concentrations in multiple sclerosis patients: A systematic review and meta-analysis. EXCLI J. 2021;20:1571-84. https://doi.org/10.17179/excli2021-3484
  • 67. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502-17. https://doi.org/10.1016/S0140-6736(08)61620-7
  • 68. Visconti A, Cotichini R, Cannoni S, Bocca B, Forte G, Ghazaryan A, et al. Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: a six-month longitudinal follow-up study. Ann Ist Super Sanita. 2005;41(2):217-22.
  • 69. Giacoppo S, Galuppo M, Calabrò RS, D’Aleo G, Marra A, Sessa E, et al. Heavy metals and neurodegenerative diseases: an observational study. Biological trace element research. 2014;161:151-60. https://doi.org/10.1007/s12011-014-0094-5

Effects of Mercury Exposure on Neurodegenerative Diseases: Traditional Review

Year 2024, Volume: 44 Issue: 1, 62 - 74, 01.03.2024
https://doi.org/10.52794/hujpharm.1353188

Abstract

Due to environmental pollution, humans are exposed to various heavy metals, including mercury, in their daily lives. Mercury is common in nature and is used in thermometers, barometers, dental fillings. It is a toxic heavy metal and it exists in three different forms which has toxic effects through different mechanisms. Exposure to mercury causes degradation of proteins, increase in reactive oxygen species and enzyme inhibition. Neurodegenerative disorders are suggested to occur due to defective protein degradation and aggregation, mitochondrial dysfunction related to oxidative stress and free radical formation, and metal toxicity. There are various evidences that mercury and compounds cause neurodegenerative diseases. Because of mercury exposure, toxic effects such as DNA fragmentation and deterioration of the integrity of neurons can be observed. Severe damage to neurons results in neuronal loss, while neuronal loss makes it inevitable to observe neurodegenerative diseases. In this review, we summarized the studies about Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis, which are the main neurodegenerative diseases linked to mercury exposure. Studies showed that mercury exposure may be associated with all neurodegenerative diseases, especially Alzheimer’s disease. In summary, it can be stated that mercury may be associated with neurodegeneration and related pathological conditions.

Ethical Statement

Etik kurul beyanı bu yayın için gerekmemektedir.

Supporting Institution

Yoktur

Thanks

Yoktur

References

  • 1. PubChem. PubChem Element Summary for AtomicNumber 80, Mercury [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004. [cited October 2023]. Available from: https://pubchem.ncbi.nlm.nih.gov/element/Mercury
  • 2. USEPA. How People are Exposed to Mercury [Internet]. The United States Environmental Protection Agency; 2023. [cited October 2023]. Available from: https://www.epa.gov/mercury/how-people-are-exposed-mercury.
  • 3. Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep. 2023;10:498-508. https://doi.org/10.1016/j.toxrep.2023.04.009
  • 4. Sharma BM, Sáňka O, Kalina J, Scheringer M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environment international. 2019;125:300-19. https://doi.org/10.1016/j.envint.2018.12.016
  • 5. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol. 2003;18(3):149-75. https://doi.org/10.1002/tox.10116
  • 6. Yiğit V, Müftügil N. Bazı balık türlerinde saptanan civa miktarları. Gıda. 1985;10(1):53-56.
  • 7. Yavuz CI. Environmental mercury exposure and health effects. Turkish Journal of Public Health. 2020;18(2):204-17. https://doi.org/10.20518/tjph.554605
  • 8. Fernandes Azevedo B, Barros Furieri L, Pecanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simoes M, et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. 2012;2012:949048. https://doi.org/10.1155/2012/949048
  • 9. Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36(8):609-62. https://doi.org/10.1080/10408440600845619
  • 10. Özbolat G, Abdullah T. Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi. 2016;25(4):502-21. https://doi.org/10.17827/aktd.253562
  • 11. Hacioğlu C, Kar F, Kanbak G. Chronic mercury exposure: oxidative stress and neurotoxicity. Biological Diversity and Conservation. 2017;10(3):58-64.
  • 12. Brookes N, Kristt DA. Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J Neurochem. 1989;53(4):1228-37. https://doi.org/10.1111/j.1471 4159.1989.tb07419.x
  • 13. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med. 2003;349(18):1731-7. https://doi.org/10.1056/NEJMra022471
  • 14. Clarkson TW, Vyas JB, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med. 2007;50(10):757-64. https://doi.org/10.1002/ajim.20476
  • 15. Halbach S, Vogt S, Kohler W, Felgenhauer N, Welzl G, Kremers L, et al. Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: interaction of Hg species in erythrocytes. Environ Res. 2008;107(1):69-78. https://doi.org/10.1016/j.envres.2007.07.005
  • 16. Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997;19(6):417-28. https://doi.org/10.1016/s0892-0362(97)00097-4
  • 17. Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012;45(6):344-52. https://doi.org/10.3961/jpmph.2012.45.6.344
  • 18. Von Burg R. Inorganic mercury. J Appl Toxicol. 1995;15(6):483-93. https://doi.org/10.1002/jat.2550150610
  • 19. Houston MC. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med. 2007;13(2):128-133. https://doi.org/10.1111/j.1751-7176.2011.00489.x
  • 20. Dürer TS. Amalgam Dolgular. Bilimsel Tamamlayıcı Tıp Regülasyon ve Nöral Terapi Dergisi. 2017; 11(3):26-31.
  • 21. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021;12:643972. https://doi.org/10.3389/fphar.2021.643972
  • 22. Pyatha S, Kim H, Lee D, Kim K. Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants (Basel).2022;11(12):2467. https://doi.org/10.3390/antiox11122467
  • 23. Fujimura M, Usuki F. Cellular Conditions Responsible for Methylmercury-Mediated Neurotoxicity. Int J Mol Sci. 2022;23(13):7218. https://doi.org/10.3390/ijms23137218
  • 24. Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res. 2021;1752:147234. https://doi.org/10.1016/j.brainres. 2020.147234
  • 25. Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Inhibition of p38 Mitogen-Activated Protein Kinases Attenuates Methylmercury Toxicity in SH-SY5Y Neuroblastoma Cells. Biol Pharm Bull. 2023;46(9):1203-10. https://doi.org/10.1248/bpb.b23-00014
  • 26. Kim BM, Choi AL, Ha EH, Pedersen L, Nielsen F, Weihe P, et al. Corrigendum to ‘Effect of hemoglobin adjustment on the precision of mercury concentrations in maternal and cord blood’ [Environ. Res. 132 (2014) 407-412]. Environ Res. 2016;147:630. https://doi.org/10.1016/j.envres.2016.01.015
  • 27. Heng YY, Asad I, Coleman B, Menard L, Benki-Nugent S, Hussein Were F, et al. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS One. 2022;17(3):e0265536. https://doi. org/10.1371/journal.pone.0265536
  • 28. Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, et al. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere. 2023;319:137917. https://doi.org/10.1016/j.chemosphere.2023.137917
  • 29. Ponce RA, Kavanagh TJ, Mottet NK, Whittaker SG, Faustman EM. Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol. 1994;127(1):83-90. https://doi.org/10.1006/taap.1994.1142
  • 30. Llop S, Engstrom K, Ballester F, Franforte E, Alhamdow A, Pisa F, et al. Polymorphisms in ABC transporter genes and concentrations of mercury in newborns--evidence from two Mediterranean birth cohorts. PLoS One. 2014;9(5):e97172. https://doi.org/10.1371/journal.pone.0097172
  • 31. Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strahle U. Toxicity of mercury: Molecular evidence. Chemosphere. 2020;245:125586. https://doi.org/10.1016/j.chemosphere.2019.125586
  • 32. Gundacker C, Wittmann KJ, Kukuckova M, Komarnicki G, Hikkel I, Gencik M. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ Res. 2009;109(6):786-96. https://doi.org/10.1016/j.envres.2009.05.003
  • 33. Woods JS, Heyer NJ, Russo JE, Martin MD, Farin FM. Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children’s Amalgam clinical trial. Neurotoxicology. 2014;44:288-302. https://doi.org/10.1016/j.neuro.2014.07.010
  • 34. Ijomone OM, Ijomone OK, Iroegbu JD, Ifenatuoha CW, Olung NF, Aschner M. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology. 2020;81:51-65. https://doi.org/10.1016/j.neuro.2020.08.005
  • 35. Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem. 2008;106(3):1378-87. https://doi.org/10.1111/j.1471-4159.2008.05484.x
  • 36. Bose R, Onishchenko N, Edoff K, Janson Lang AM, Ceccatelli S. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicol Sci. 2012;130(2):383-90. https://doi.org/10.1093/toxsci/kfs257
  • 37. Xu X, Li Y-F, Zhao J, Li Y, Lin J, Li B, et al. Nanomaterial-based approaches for the detection and speciation of mercury. Analyst. 2015;140(23):7841-53. https://doi.org/10.1039/c5an01519g
  • 38. Cheng Z, Wei J, Gu L, Zou L, Wang T, Chen L, et al. DNAzyme-based biosensors for mercury (II) detection: Rational construction, advances and perspectives. J Hazard Mater. 2022;431:128606. https://doi.org/10.1016/j.jhazmat.2022.128606
  • 39. Chen J, Chakravarty P, Davidson GR, Wren DG, Locke MA, Zhou Y, et al. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry. Anal Chim Acta. 2015;871:9-17. https://doi.org/10.1016/j.aca.2015.03.011
  • 40. Giacomino A, Ruo Redda A, Caligiuri R, Inaudi P, Squadrone S, Abete MC, et al. Development of an easy portable procedure for on-site determination of mercury and methylmercury. Food Chem. 2021;342:128347. https://doi.org/10.1016/j.foodchem.2020.128347
  • 41. Windmöller CC, Silva NC, Morais Andrade PH, Mendes LA, Magalhães do Valle C. Use of a direct mercury analyzer® for mercury speciation in different matrices without sample preparation. Analytical Methods. 2017;9(14):2159-67. https://doi.org/10.1039/C6AY03041F
  • 42. Agrawal M, Biswas A. Molecular diagnostics of neurodegenerative disorders. Front Mol Biosci. 2015;2:54. https://doi.org/10.3389/fmolb.2015.00054
  • 43. Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front Toxicol. 2022;4:837579. https://doi.org/10.3389/ftox.2022.837579
  • 44. Bjorklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol. 2022;96(12):3175-99. https://doi.org/10.1007/s00204-022-03366-3
  • 45. Li LX, Chu JH, Chen XW, Gao PC, Wang ZY, Liu C, Fan RF. Selenium ameliorates mercuric chloride-induced brain damage through activating BDNF/TrKB/PI3K/AKT and inhibiting NF-kappaB signaling pathways. J Inorg Biochem. 2022;229:111716. https://doi.org/10.1016/j.jinorgbio.2022.111716
  • 46. Branco V, Carvalho L, Barboza C, Mendes E, Cavaco A, Carvalho C. Selenium and Redox Enzyme Activity in Pregnant Women Exposed to Methylmercury. Antioxidants (Basel). 2022;11(11):2291. https://doi.org/10.3390/antiox11112291
  • 47. El-Sewify IM, Radwan A, Elghazawy NH, Fritzsche W, Azzazy HME. Optical chemosensors for environmental monitoring of toxic metals related to Alzheimer’s disease. RSC Adv. 2022;12(50):32744-55. https://doi.org/10.1039/d2ra05384e
  • 48. Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology. 2004;62(11):1984-9. https://doi.org/10.1212/01.wnl.0000129697.01779.0a
  • 49. Elonheimo HM, Andersen HR, Katsonouri A, Tolonen H. Environmental Substances Associated with Alzheimer’s Disease-A Scoping Review. Int J Environ Res Public Health. 2021;18(22):11839.https://doi.org/10.3390/ijerph182211839
  • 50. Siblerud R, Mutter J, Moore E, Naumann J, Walach H. A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer’s Disease. Int J Environ Res Public Health. 2019;16(24):5152. https://doi.org/10.3390/ijerph16245152
  • 51. Drasch G, Schupp I, Riedl G, Günther G. Einfluß von Amalgamfüllungen auf die. Quecksilberkonzentration in menschlichen Organen. Dtsch Zahnärztl Z 1992;47:490-6. https://doi.org/10.1007/978-3-642-79156-7_48
  • 52. Guzzi G, Grandi M, Cattaneo C, Calza S, Minoia C, Ronchi A, et al. Dental amalgam and mercury levels in autopsy tissues: food for thought. Am J Forensic Med Pathol. 2006;27(1):42-5. https://doi.org/10.1097/01.paf.0000201177.62921.c8
  • 53. Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H. Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuroendocrinology Letters. 2004;25(5):331-9.
  • 54. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A. 2006;103(15):5644-51. https://doi.org/10.1073/pnas.0600549103
  • 55. Çilingir O, Adapinar BDÖ, Aras BD, Gökalp EE, Özkan S, Arslan S, et al. Türk Popülasyonunda APOE Polimorfizmleri ve Alzheimer Hastalığı Arasındaki İlişki. Osmangazi Tıp Dergisi. 2020;42(2):222-30. https://doi.org/10.20515/otd.553900
  • 56. Olivieri G, Brack C, Muller-Spahn F, Stahelin HB, Herrmann M, Renard P, et al. Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem. 2000;74(1):231-6. https://doi.org/10.1046/j.1471-4159.2000.0740231.x
  • 57. Fujimura M, Usuki F, Sawada M, Takashima A. Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. Neurotoxicology. 2009;30(6):1000-7. https://doi.org/10.1016/j.neuro.2009.08.001
  • 58. Hoffman HI, Bradley WG, Chen CY, Pioro EP, Stommel EW, Andrew AS. Amyotrophic Lateral Sclerosis Risk, Family Income, and Fish Consumption Estimates of Mercury and Omega- 3 PUFAs in the United States. Int J Environ Res Public Health. 2021;18(9):4528.https://doi.org/10.3390/ijerph18094528
  • 59. Cariccio VL, Sama A, Bramanti P, Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res. 2019;187(2):341-56. https://doi.org/10.1007/s12011-018-1380-4
  • 60. Schwarz S, Husstedt I, Bertram HP, Kuchelmeister K. Amyotrophic lateral sclerosis after accidental injection of mercury. J Neurol Neurosurg Psychiatry. 1996;60(6):698. https://doi.org/10.1136/jnnp.60.6.698
  • 61. Johnson FO, Atchison WD. The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology. 2009;30(5):761-5. https://doi.org/10.1016/j.neuro.2009.07.010
  • 62. Arvidson B. Inorganic mercury is transported from muscular nerve terminals to spinal and brainstem motoneurons. Muscle Nerve. 1992;15(10):1089-94. https://doi.org/10.1002/mus.880151006
  • 63. Rustam H, Von Burg R, Amin-Zaki L, El Hassani S. Evidence for a neuromuscular disorder in methylmercury poisoning. Arch Environ Health. 1975;30(4):190-5. https://doi.org/10.1080/00039896.1975.10666674
  • 64. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY, et al. Methylmercury poisoning in Iraq. Science. 1973;181(4096):230-41. https://doi.org/10.1126/science.181.4096.230
  • 65. Mahaffey KR, Clickner RP, Bodurow CC. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect. 2004;112(5):562-70. https://doi.org/10.1289/ehp.6587
  • 66. Sarihi S, Niknam M, Mahjour S, Hosseini-Bensenjan M, Moazzen F, Soltanabadi S, Akbari H. Toxic heavy metal concentrations in multiple sclerosis patients: A systematic review and meta-analysis. EXCLI J. 2021;20:1571-84. https://doi.org/10.17179/excli2021-3484
  • 67. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502-17. https://doi.org/10.1016/S0140-6736(08)61620-7
  • 68. Visconti A, Cotichini R, Cannoni S, Bocca B, Forte G, Ghazaryan A, et al. Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: a six-month longitudinal follow-up study. Ann Ist Super Sanita. 2005;41(2):217-22.
  • 69. Giacoppo S, Galuppo M, Calabrò RS, D’Aleo G, Marra A, Sessa E, et al. Heavy metals and neurodegenerative diseases: an observational study. Biological trace element research. 2014;161:151-60. https://doi.org/10.1007/s12011-014-0094-5
There are 69 citations in total.

Details

Primary Language Turkish
Subjects Pharmaceutical Toxicology
Journal Section Review Articles
Authors

Elif Duru 0000-0003-0934-9762

Hülya Tezel 0000-0002-1843-3424

Deniz Arca Çakır 0000-0002-6110-1775

Terken Baydar 0000-0002-5497-9600

Pınar Erkekoğlu 0000-0003-4713-7672

Publication Date March 1, 2024
Acceptance Date February 13, 2024
Published in Issue Year 2024 Volume: 44 Issue: 1

Cite

Vancouver Duru E, Tezel H, Çakır DA, Baydar T, Erkekoğlu P. Cıva Maruziyetinin Nörodejeneratif Hastalıklar Üzerindeki Etkisi: Geleneksel Derleme. HUJPHARM. 2024;44(1):62-74.