Research Article
BibTex RIS Cite

Investigation of the mechanical behavior of recycled polypropylene-based composite materials filled with waste cotton and pine sawdust

Year 2023, Volume: 9 Issue: 4, 412 - 418, 31.12.2023

Abstract

Composite materials are produced synthetically with a matrix material and a filler or reinforcement to provide the desired properties. In composites, synthetic fillers are often preferred. Natural fibers and fillers, on the other hand, are now preferred over synthetic fillers. These materials can be found in polymer matrices as reinforcement and fillers. Composite materials made from natural materials are replacing traditional materials in the industry for many reasons, including easy processing, lightness, and low cost.
In this study, the usability of pine wood sawdust and cotton together in polymer matrix composites was investigated. Pine sawdust is a product that emerges as waste, especially in the furniture industry. On the other hand, cotton has a wide area of use in the textile industry and is also obtained as a waste product. Recycled Polypropylene is used as a matrix material due to its intense use in industry. Pine sawdust was prepared using a sieve in the size of 0-250 microns. Since the waste cotton is in different sizes, it was cut to be 1 cm to have certain sizes. Composite materials were produced by adding pine sawdust and textile waste to recycled Polypropylene at different ratios. Composite samples were prepared by injection molding method. The physical properties of the samples such as tensile, impact, hardness and water absorption properties were investigated. SEM images of the fracture surfaces were analyzed. As a result of the study, it was evaluated that pine sawdust and waste cotton would be used in polypropylene-based composite applications.

Supporting Institution

Marmara Üniversitesi

Project Number

FYL-2022-10802

References

  • [1] Jose, J. P., & Joseph, K. (2012). Advances in Polymer Composites: Macro- and Microcomposites – State of the Art, New Challenges, and Opportunities. In Polymer Composites (pp. 1-16). https://doi.org/https://doi.org/10.1002/9783527645213.ch1
  • [2] Lubin, G. (1982). Handbook of Composites (1st ed.). Van Nostrand Reinhold Company Inc.
  • [3] Subramanian, M. N. (2017). Polymers. In Polymer Blends and Composites (pp. 7-55). Scrivener Publishing LLC. https://doi.org/https://doi.org/10.1002/9781119383581.ch2
  • [4] Ebnesajjad, S. (2016). Introduction to Plastics. In E. Baur, K. Ruhrberg, & W. Woishnis (Eds.), Chemical Resistance of Engineering Thermoplastics (pp. xiii-xxv). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-47357-6.00021-0
  • [5] Ramesh, M., Rajeshkumar, L. N., Srinivasan, N., Kumar, D. V., & Balaji, D. (2022). Influence of filler material on properties of fiber-reinforced polymer composites: A review. e-Polymers, 22(1), 898-916. https://doi.org/doi:10.1515/epoly-2022-0080
  • [6] Tcherdyntsev, V. V. (2021). Reinforced Polymer Composites. Polymers, 13(4), 564. https://www.mdpi.com/2073-4360/13/4/564
  • [7] Tegethoff, F. W. (2001). Calcium Carbonate: From the Cretaceous Period into the 21st Century (1st ed.). Birkhäuser
  • [8] Balasubramanian, M. (2013). Composite Materials and Processing (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/b15551
  • [9] Chauhan, A. K., Singh, A., Kumar, D., & Mishra, K. (2021). Properties of Composite Materials. In Composite Materials (1st ed., pp. 61-78). CRC Press.
  • [10] Sachdeva, A., Singh, P. K., & Rhee, H. W. (2021). Composite Materials Properties, Characterisation, and Applications (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781003080633
  • [11] Ageyeva, T., Barany, T., & Karger-Kocsis, J. (2019). Composites. In J. Karger-Kocsis & T. Barany (Eds.), Polypropylene Handbook: Morphology, Blends and Composites (pp. 481-578). Springer International Publishing. https://doi.org/10.1007/978-3-030-12903-3_9
  • [12] Karian, H. (2003). Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded (2nd ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9780203911808
  • [13] Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. https://doi.org/https://doi.org/10.1016/j.compositesa.2003.09.016
  • [14] Kuram, E. (2022). Advances in development of green composites based on natural fibers: a review. Emergent Materials, 5(3), 811-831. https://doi.org/10.1007/s42247-021-00279-2
  • [15] Mesquita, R. G. d. A., César, A. A. d. S., Mendes, R. F., Mendes, L. M., Marconcini, J. M., Glenn, G., & Tonoli, G. H. D. (2017). Polyester Composites Reinforced with Corona-Treated Fibers from Pine, Eucalyptus and Sugarcane Bagasse. Journal of Polymers and the Environment, 25(3), 800-811. https://doi.org/10.1007/s10924-016-0864-6
  • [16] Murugu Nachippan, N., Alphonse, M., Bupesh Raja, V. K., Shasidhar, S., Varun Teja, G., & Harinath Reddy, R. (2021). Experimental investigation of hemp fiber hybrid composite material for automotive application. Materials Today: Proceedings, 44, 3666-3672. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.798
  • [17] Nneka Anosike-Francis, E., Ijeoma Obianyo, I., Wasiu Salami, O., Odochi Ihekweme, G., Ikpi Ofem, M., Olajide Olorunnisola, A., & Peter Onwualu, A. (2022). Physical-Mechanical properties of wood based composite reinforced with recycled polypropylene and cowpea (Vigna unguiculata Walp.) husk. Cleaner Materials, 5, 100101. https://doi.org/https://doi.org/10.1016/j.clema.2022.100101
  • [18] Raja, T., Vinayagam, M., Thanakodi, S., Seikh, A. H., Siddique, M. H., Subbiah, R., & Gebrekidan, A. M. (2022). Mechanical Properties of Banyan Fiber-Reinforced Sawdust Nanofiller Particulate Hybrid Polymer Composite. Journal of Nanomaterials, 2022, 9475468. https://doi.org/10.1155/2022/9475468
  • [19] Albinante, S. R., Platenik, G., & Batista, L. N. (2017). Composites of Olefin Polymer/Natural Fibers: The Surface Modifications on Natural Fibers. In Handbook of Composites from Renewable Materials (pp. 431-456). https://doi.org/https://doi.org/10.1002/9781119441632.ch79
  • [20] Ichazo, M. N., Albano, C., González, J., Perera, R., & Candal, M. V. (2001). Polypropylene/wood flour composites: treatments and properties. Composite Structures, 54(2), 207-214. https://doi.org/https://doi.org/10.1016/S0263-8223(01)00089-7
  • [21] Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139-5149. https://doi.org/https://doi.org/10.1016/0032-3861(96)00144-9
  • [22] Akil, H. M., Omar, M. F., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., & Abu Bakar, A. (2011). Kenaf fiber reinforced composites: A review. Materials & Design, 32(8), 4107-4121. https://doi.org/https://doi.org/10.1016/j.matdes.2011.04.008
  • [23] Demirer, H., Kartal, İ., Yıldırım, A., & Büyükkaya, K. (2018). The Utilisability of Ground Hazelnut Shell as Filler in Polypropylene Composites. Acta Physica Polonica A, 134, 254-256. https://doi.org/10.12693/APhysPolA.134.254
  • [24] Kartal, İ. (2020). Effect of Hornbeam Sawdust Size on the Mechanical Properties of Polyethylene Composites. Emerging Materials Research, 9(3), 979-984. https://doi.org/10.1680/jemmr.20.00164
  • [25] Kartal, İ., Naycı, G., & Demirer, H. (2019a). Cam ve Bambu Lifleriyle Takviyelendirilmiş Vinilester Kompozitlerinin Mekanik Özelliklerinin İncelenmesi. International Journal of Multidisciplinary Studies and Innovative Technologies
  • [26] Kartal, İ., Naycı, G., & Demirer, H. (2019b). Kestane/Gürgen Talaşı Dolgulu Vinilester Kompozitlerin Mekanik Özelliklerinin İncelenmesi. European Journal of Science and Technology, 723-728. https://doi.org/10.31590/ejosat.566756
  • [27] Kartal, İ., Naycı, G., & Demirer, H. (2020). The Effect of Chestnut Wood Flour Size on the Mechanical Properties of Chestnut Wood Flour Filled Vinylester Composites. Emerging Materials Research, 9, 1-6. https://doi.org/10.1680/jemmr.19.00179
  • [28] Kushwanth Theja, K., Bharathiraja, G., Sakthi Murugan, V., & Muniappan, A. (2023). Evaluation of mechanical properties of tea dust filler reinforced polymer composite. Materials Today: Proceedings, 80, 3208-3211. https://doi.org/https://doi.org/10.1016/j.matpr.2021.07.213
  • [29] Şengör, İ., Cesur, S., Kartal, İ., Oktar, F. N., Ekren, N., İnan, A. T., & Gündüz, O. (2018). Fabrication and Characterization of Hazelnut ShellPowder with Reinforced Polymer Composite Nanofibers ICNMA: 2018 20th International Conference on Nanostructured Materials and Applications, Zurich, Switzerland.
  • [30] Usman, M. A., Momohjimoh, I., & Usman, A. O. (2020). Mechanical, physical and biodegradability performances of treated and untreated groundnut shell powder recycled polypropylene composites. Materials Research Express, 7(3), 035302. https://doi.org/10.1088/2053-1591/ab750e
  • [31] Jan, P., Matkovič, S., Bek, M., Perse, L. S., & Kalin, M. (2023). Tribological behaviour of green wood-based unrecycled and recycled polypropylene composites. Wear, 524-525, 204826. https://doi.org/https://doi.org/10.1016/j.wear.2023.204826
  • [32] Shah, A. u. R., Imdad, A., Sadiq, A., Malik, R. A., Alrobei, H., & Badruddin, I. A. (2023). Mechanical, Thermal, and Fire Retardant Properties of Rice Husk Biochar Reinforced Recycled High-Density Polyethylene Composite Material. Polymers, 15(8), 1827. https://www.mdpi.com/2073-4360/15/8/1827
  • [33] Zănoagă, M., & Tanasă, F. (2011). Comparative Study On Performance Of Virgin And Recycled High Density Polyethylene-Wood Composites. Annals of the University Dunarea de Jos of Galati: Fascicle II, Mathematics, Physics, Theoretical Mechanics, 34.
  • [34] Shirvanimoghaddam, K., Motamed, B., Ramakrishna, S., & Naebe, M. (2020). Death by waste: Fashion and textile circular economy case. Science of The Total Environment, 718, 137317. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137317
  • [35] Jha, M. K., Kumar, V., Maharaj, L., & Singh, R. J. (2004). Studies on Leaching and Recycling of Zinc from Rayon Waste Sludge. Industrial & Engineering Chemistry Research, 43(5), 1284-1295. https://doi.org/10.1021/ie020949p
  • [36] Hole, G., & Hole, A. S. (2020). Improving recycling of textiles based on lessons from policies for other recyclable materials: A minireview. Sustainable Production and Consumption, 23, 42-51. https://doi.org/https://doi.org/10.1016/j.spc.2020.04.005
  • [37] Mishra, R., Behera, B., & Militky, J. (2014). Recycling of textile waste into green composites: Performance characterization. Polymer Composites, 35(10), 1960-1967. https://doi.org/https://doi.org/10.1002/pc.22855
  • [38] Serra, A., Tarrés, Q., Llop, M., Reixach, R., Mutjé, P., & Espinach, F. X. (2019). Recycling dyed cotton textile byproduct fibers as polypropylene reinforcement. Textile Research Journal, 89(11), 2113-2125. https://doi.org/10.1177/0040517518786278
  • [39] Khan, M., Abas, M., Noor, S., Salah, B., Saleen, W., and Khan, R. (2021). “Experimental and statistical analysis of sawmill wood waste composite properties for practical applications,” Polymers 13(4038), 1-19.
  • [40] Huda, M. S., Drzal, L. T., Misra, M., and Mohanty, A. K. (2006). “Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties,” J. Appl. Polym. Sci. 102, 4856-4869.
  • [41] Kartal İ, Büyük B, (2023) Ağaç Talaşı Dolgulu Geri Dönüşüm Polipropilen Kompozitlerinin Mekanik Özelliklerinin İncelenmesi, 2nd International Materials Engineering and Advanced Manufacturing Technologies Congress (IMEAMTC’23) p. 156-162.
Year 2023, Volume: 9 Issue: 4, 412 - 418, 31.12.2023

Abstract

Project Number

FYL-2022-10802

References

  • [1] Jose, J. P., & Joseph, K. (2012). Advances in Polymer Composites: Macro- and Microcomposites – State of the Art, New Challenges, and Opportunities. In Polymer Composites (pp. 1-16). https://doi.org/https://doi.org/10.1002/9783527645213.ch1
  • [2] Lubin, G. (1982). Handbook of Composites (1st ed.). Van Nostrand Reinhold Company Inc.
  • [3] Subramanian, M. N. (2017). Polymers. In Polymer Blends and Composites (pp. 7-55). Scrivener Publishing LLC. https://doi.org/https://doi.org/10.1002/9781119383581.ch2
  • [4] Ebnesajjad, S. (2016). Introduction to Plastics. In E. Baur, K. Ruhrberg, & W. Woishnis (Eds.), Chemical Resistance of Engineering Thermoplastics (pp. xiii-xxv). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-47357-6.00021-0
  • [5] Ramesh, M., Rajeshkumar, L. N., Srinivasan, N., Kumar, D. V., & Balaji, D. (2022). Influence of filler material on properties of fiber-reinforced polymer composites: A review. e-Polymers, 22(1), 898-916. https://doi.org/doi:10.1515/epoly-2022-0080
  • [6] Tcherdyntsev, V. V. (2021). Reinforced Polymer Composites. Polymers, 13(4), 564. https://www.mdpi.com/2073-4360/13/4/564
  • [7] Tegethoff, F. W. (2001). Calcium Carbonate: From the Cretaceous Period into the 21st Century (1st ed.). Birkhäuser
  • [8] Balasubramanian, M. (2013). Composite Materials and Processing (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/b15551
  • [9] Chauhan, A. K., Singh, A., Kumar, D., & Mishra, K. (2021). Properties of Composite Materials. In Composite Materials (1st ed., pp. 61-78). CRC Press.
  • [10] Sachdeva, A., Singh, P. K., & Rhee, H. W. (2021). Composite Materials Properties, Characterisation, and Applications (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781003080633
  • [11] Ageyeva, T., Barany, T., & Karger-Kocsis, J. (2019). Composites. In J. Karger-Kocsis & T. Barany (Eds.), Polypropylene Handbook: Morphology, Blends and Composites (pp. 481-578). Springer International Publishing. https://doi.org/10.1007/978-3-030-12903-3_9
  • [12] Karian, H. (2003). Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded (2nd ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9780203911808
  • [13] Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. https://doi.org/https://doi.org/10.1016/j.compositesa.2003.09.016
  • [14] Kuram, E. (2022). Advances in development of green composites based on natural fibers: a review. Emergent Materials, 5(3), 811-831. https://doi.org/10.1007/s42247-021-00279-2
  • [15] Mesquita, R. G. d. A., César, A. A. d. S., Mendes, R. F., Mendes, L. M., Marconcini, J. M., Glenn, G., & Tonoli, G. H. D. (2017). Polyester Composites Reinforced with Corona-Treated Fibers from Pine, Eucalyptus and Sugarcane Bagasse. Journal of Polymers and the Environment, 25(3), 800-811. https://doi.org/10.1007/s10924-016-0864-6
  • [16] Murugu Nachippan, N., Alphonse, M., Bupesh Raja, V. K., Shasidhar, S., Varun Teja, G., & Harinath Reddy, R. (2021). Experimental investigation of hemp fiber hybrid composite material for automotive application. Materials Today: Proceedings, 44, 3666-3672. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.798
  • [17] Nneka Anosike-Francis, E., Ijeoma Obianyo, I., Wasiu Salami, O., Odochi Ihekweme, G., Ikpi Ofem, M., Olajide Olorunnisola, A., & Peter Onwualu, A. (2022). Physical-Mechanical properties of wood based composite reinforced with recycled polypropylene and cowpea (Vigna unguiculata Walp.) husk. Cleaner Materials, 5, 100101. https://doi.org/https://doi.org/10.1016/j.clema.2022.100101
  • [18] Raja, T., Vinayagam, M., Thanakodi, S., Seikh, A. H., Siddique, M. H., Subbiah, R., & Gebrekidan, A. M. (2022). Mechanical Properties of Banyan Fiber-Reinforced Sawdust Nanofiller Particulate Hybrid Polymer Composite. Journal of Nanomaterials, 2022, 9475468. https://doi.org/10.1155/2022/9475468
  • [19] Albinante, S. R., Platenik, G., & Batista, L. N. (2017). Composites of Olefin Polymer/Natural Fibers: The Surface Modifications on Natural Fibers. In Handbook of Composites from Renewable Materials (pp. 431-456). https://doi.org/https://doi.org/10.1002/9781119441632.ch79
  • [20] Ichazo, M. N., Albano, C., González, J., Perera, R., & Candal, M. V. (2001). Polypropylene/wood flour composites: treatments and properties. Composite Structures, 54(2), 207-214. https://doi.org/https://doi.org/10.1016/S0263-8223(01)00089-7
  • [21] Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139-5149. https://doi.org/https://doi.org/10.1016/0032-3861(96)00144-9
  • [22] Akil, H. M., Omar, M. F., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., & Abu Bakar, A. (2011). Kenaf fiber reinforced composites: A review. Materials & Design, 32(8), 4107-4121. https://doi.org/https://doi.org/10.1016/j.matdes.2011.04.008
  • [23] Demirer, H., Kartal, İ., Yıldırım, A., & Büyükkaya, K. (2018). The Utilisability of Ground Hazelnut Shell as Filler in Polypropylene Composites. Acta Physica Polonica A, 134, 254-256. https://doi.org/10.12693/APhysPolA.134.254
  • [24] Kartal, İ. (2020). Effect of Hornbeam Sawdust Size on the Mechanical Properties of Polyethylene Composites. Emerging Materials Research, 9(3), 979-984. https://doi.org/10.1680/jemmr.20.00164
  • [25] Kartal, İ., Naycı, G., & Demirer, H. (2019a). Cam ve Bambu Lifleriyle Takviyelendirilmiş Vinilester Kompozitlerinin Mekanik Özelliklerinin İncelenmesi. International Journal of Multidisciplinary Studies and Innovative Technologies
  • [26] Kartal, İ., Naycı, G., & Demirer, H. (2019b). Kestane/Gürgen Talaşı Dolgulu Vinilester Kompozitlerin Mekanik Özelliklerinin İncelenmesi. European Journal of Science and Technology, 723-728. https://doi.org/10.31590/ejosat.566756
  • [27] Kartal, İ., Naycı, G., & Demirer, H. (2020). The Effect of Chestnut Wood Flour Size on the Mechanical Properties of Chestnut Wood Flour Filled Vinylester Composites. Emerging Materials Research, 9, 1-6. https://doi.org/10.1680/jemmr.19.00179
  • [28] Kushwanth Theja, K., Bharathiraja, G., Sakthi Murugan, V., & Muniappan, A. (2023). Evaluation of mechanical properties of tea dust filler reinforced polymer composite. Materials Today: Proceedings, 80, 3208-3211. https://doi.org/https://doi.org/10.1016/j.matpr.2021.07.213
  • [29] Şengör, İ., Cesur, S., Kartal, İ., Oktar, F. N., Ekren, N., İnan, A. T., & Gündüz, O. (2018). Fabrication and Characterization of Hazelnut ShellPowder with Reinforced Polymer Composite Nanofibers ICNMA: 2018 20th International Conference on Nanostructured Materials and Applications, Zurich, Switzerland.
  • [30] Usman, M. A., Momohjimoh, I., & Usman, A. O. (2020). Mechanical, physical and biodegradability performances of treated and untreated groundnut shell powder recycled polypropylene composites. Materials Research Express, 7(3), 035302. https://doi.org/10.1088/2053-1591/ab750e
  • [31] Jan, P., Matkovič, S., Bek, M., Perse, L. S., & Kalin, M. (2023). Tribological behaviour of green wood-based unrecycled and recycled polypropylene composites. Wear, 524-525, 204826. https://doi.org/https://doi.org/10.1016/j.wear.2023.204826
  • [32] Shah, A. u. R., Imdad, A., Sadiq, A., Malik, R. A., Alrobei, H., & Badruddin, I. A. (2023). Mechanical, Thermal, and Fire Retardant Properties of Rice Husk Biochar Reinforced Recycled High-Density Polyethylene Composite Material. Polymers, 15(8), 1827. https://www.mdpi.com/2073-4360/15/8/1827
  • [33] Zănoagă, M., & Tanasă, F. (2011). Comparative Study On Performance Of Virgin And Recycled High Density Polyethylene-Wood Composites. Annals of the University Dunarea de Jos of Galati: Fascicle II, Mathematics, Physics, Theoretical Mechanics, 34.
  • [34] Shirvanimoghaddam, K., Motamed, B., Ramakrishna, S., & Naebe, M. (2020). Death by waste: Fashion and textile circular economy case. Science of The Total Environment, 718, 137317. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137317
  • [35] Jha, M. K., Kumar, V., Maharaj, L., & Singh, R. J. (2004). Studies on Leaching and Recycling of Zinc from Rayon Waste Sludge. Industrial & Engineering Chemistry Research, 43(5), 1284-1295. https://doi.org/10.1021/ie020949p
  • [36] Hole, G., & Hole, A. S. (2020). Improving recycling of textiles based on lessons from policies for other recyclable materials: A minireview. Sustainable Production and Consumption, 23, 42-51. https://doi.org/https://doi.org/10.1016/j.spc.2020.04.005
  • [37] Mishra, R., Behera, B., & Militky, J. (2014). Recycling of textile waste into green composites: Performance characterization. Polymer Composites, 35(10), 1960-1967. https://doi.org/https://doi.org/10.1002/pc.22855
  • [38] Serra, A., Tarrés, Q., Llop, M., Reixach, R., Mutjé, P., & Espinach, F. X. (2019). Recycling dyed cotton textile byproduct fibers as polypropylene reinforcement. Textile Research Journal, 89(11), 2113-2125. https://doi.org/10.1177/0040517518786278
  • [39] Khan, M., Abas, M., Noor, S., Salah, B., Saleen, W., and Khan, R. (2021). “Experimental and statistical analysis of sawmill wood waste composite properties for practical applications,” Polymers 13(4038), 1-19.
  • [40] Huda, M. S., Drzal, L. T., Misra, M., and Mohanty, A. K. (2006). “Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties,” J. Appl. Polym. Sci. 102, 4856-4869.
  • [41] Kartal İ, Büyük B, (2023) Ağaç Talaşı Dolgulu Geri Dönüşüm Polipropilen Kompozitlerinin Mekanik Özelliklerinin İncelenmesi, 2nd International Materials Engineering and Advanced Manufacturing Technologies Congress (IMEAMTC’23) p. 156-162.
There are 41 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Research Article
Authors

İlyas Kartal 0000-0001-9677-477X

Hilal Selimoğlu 0000-0002-5344-7100

Project Number FYL-2022-10802
Early Pub Date December 15, 2023
Publication Date December 31, 2023
Submission Date July 26, 2023
Acceptance Date December 15, 2023
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

APA Kartal, İ., & Selimoğlu, H. (2023). Investigation of the mechanical behavior of recycled polypropylene-based composite materials filled with waste cotton and pine sawdust. International Journal of Computational and Experimental Science and Engineering, 9(4), 412-418.