Research Article
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 4, 388 - 393, 31.12.2023

Abstract

References

  • [1] Wu, Y., & Wu, Y. (2017). Neutron irradiation and material damage. Fusion neutronics, 91-113.
  • [2] Konings, R., & Stoller, R. E. (2020). Comprehensive nuclear materials. Elsevier., 456–467.
  • [3] Biau, J., Chautard, E., Verrelle, P., & Dutreix, M. (2019). Altering DNA repair to improve radiation therapy: specific and multiple pathway targeting. Frontiers in oncology, 9; 1009.
  • [4] Akyıldırım, H. (2019). Calculation of Fast Neutron Shielding Parameters for Some Essential Carbohydrates. Erzincan University Journal of Science and Technology, 12(2); 1141-1148.
  • [5] Kaplan, M. F. (1989). Concrete radiation shielding. Longman Scientific and Technology, Longman Group UK Limited, Essex, London.
  • [6] Jaeger, T., & Dresner, L. (1965). Principles of radiation protection engineering, McGraw-Hill Book Company, New York.
  • [7] Hila, F. C., Jecong, J. F. M., Dingle, C. A. M., Asuncion-Astronomo, A. J., Balderas, C. V., Sagum, J. A., & Guillermo, N. R. D. (2023). ENDF/B-VIII. 0-based fast neutron removal cross sections database in Z= 1 to 92 generated via multi-layered spherical geometry. Radiation Physics and Chemistry, 206; 110770.
  • [8] Perişanoğlu, U., El-Agawany, F. I., Tekin, H. O., Kavaz, E., Zakaly, H. M., Issa, S. A., ... & Rammah, Y. S. (2021). Multiple characterization of some glassy-alloys as photon and neutron shields: In-silico Monte Carlo investigation. Materials Research Express, 8(3); 035202.
  • [9] Slimani, Y., Hamad, M. K., Olarinoye, I. O., Alajerami, Y. S., Sayyed, M. I., Almessiere, M. A., & Mhareb, M. H. A. (2021). Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties. Journal of Materials Science: Materials in Electronics, 32; 20867-20881.
  • [10] Alotaibi, B. M., Abouhaswa, A. S., Sayyed, M. I., Mahmoud, K. A., Al-Yousef, H. A., Hila, F. C., & Al-Hadeethi, Y. (2021). Structural, optical, and gamma-ray shielding properties of a newly fabricated P 2 O 5–B 2 O 3–Bi 2 O 3–Li 2 O–ZrO 2 glass system. The European Physical Journal Plus, 136; 1-22.
  • [11] Vega-Carrillo, H. R., Garcia-Reyna, M. G., Sanchez-Ortiz, A., Rio, M. D., Estefania, D., & Hernandez-Adame, L. (2022). Attenuation of Γ-Rays and Fast Neutrons in Water, Alcohol, Polyethylene, Diesel and Gasoline. Alcohol, Polyethylene, Diesel and Gasoline.
  • [12] Gili, M. B. Z., & Hila, F. C. (2021). Characterization and Radiation Shielding Properties of Philippine Natural Bentonite and Zeolite. Philippine Journal of Science, 150.
  • [13] Perişanoğlu, U., Kavaz, E., Tekin, H. O., Armoosh, S. R., Ekinci, N., & Oltulu, M. (2020). Comparison of gamma and neutron shielding competences of Fe–Cu-and brass-added Portland cement pastes: an experimental and Monte Carlo study. Applied Physics A, 126; 1-14.
  • [14] Yılmaz, E., Baltas, H., Kırıs, E., Ustabas, İ. L. K. E. R., Cevik, U. Ğ. U. R., & El-Khayatt, A. M. (2011). Gamma ray and neutron shielding properties of some concrete materials. Annals of Nuclear Energy, 38(10); 2204-2212.
  • [15] Sikora, P., El-Khayatt, A. M., Saudi, H. A., Chung, S. Y., Stephan, D., & Abd Elrahman, M. (2021). Evaluation of the effects of bismuth oxide (Bi2O3) micro and nanoparticles on the mechanical, microstructural and γ-ray/neutron shielding properties of Portland cement pastes. Construction and Building Materials, 284; 122758.
  • [16] Tuğrul, T. (2020). Investigation of mass attenuation coefficients, effective atomic numbers, and effective electron density for some molecules: study on chemotherapy drugs. Journal of Radiation Research and Applied Sciences, 13(1); 758-764.
  • [17] Aygün, B., & Karabulut, A. (2022). Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science, 8(2); 37-44.
  • [18] Shultis, J. K., & Faw, R. E. (2016). Fundamentals of Nuclear Science and Engineering Third Edition. CRC press.
  • [19] Martin, J. E. (2000). Physics for radiation protection. First printing.Wiley, New York.
  • [20] Zoller, L. K. (1964). Fast-neutron-removal cross sections. Nucleonics (US) Ceased publication, 22.
  • [21] Glasstone, S., & Sesonske, A. (1986). Nuclear Reactor Engineering, third ed.
  • [22] Profio, A. E. (1979). Radiation shielding and dosimetry. Wiley, New York.
  • [23] Wood, J. (1982). Computational Methods in Reactor Shielding. Pergamon Press, New York.
  • [24] Zali, N. M., Yazid, H., & Ahmad, M. H. A. R. M. (2018). Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites. In IOP Conference Series: Materials Science and Engineering 298(1);012018.
  • [25] Aygün, B., & Karabulut, A. (2020). The interaction of neutron and gamma radiation with some cancer drug effect ingredients. Eastern Anatolian Journal of Science, 6(2), 35-43.
  • [26] Lechner, A. (2018). CERN: Particle interactions with matter. CERN Yellow Rep. School Proc., 5, 47.
  • [27] El-Samrah, M. G., El-Mohandes, A. M., El-Khayatt, A. M., & Chidiac, S. E. (2021). MRCsC: A user-friendly software for predicting shielding effectiveness against fast neutrons. Radiation Physics and Chemistry, 182, 109356.
  • [28] Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496.
  • [29] Berger, M. J., & Hubbell, J. H. (1987). XCOM: Photon cross sections on a personal computer (No. NBSIR-87-3597). National Bureau of Standards, Washington, DC (USA). Center for

Investigation of Shielding Parameters of Fast Neutrons for Some Chemotherapy Drugs by Different Calculation Methods

Year 2023, Volume: 9 Issue: 4, 388 - 393, 31.12.2023

Abstract

In this study, we investigated the neutron attenuation properties of twelve different chemotherapy drugs utilizing various computational techniques. The computed fast neutron effective removal cross-section (ΣR, cm-1) results were compared with empirical formulas, Monte Carlo simulation data obtained from MCNP, MRCsC, and Phy-X/PSD computer program results. Additionally, within each calculation method, the half-value layer (HVL) and the mean free path (λ) values were determined. Our calculations revealed that, when compared to water and paraffin, Gemcitabine, Etoposide, Vincristine, and Doxorubicin exhibited the highest ΣR values, while Oxaliplatin exhibited the lowest ΣR value. Understanding and determining the radiation properties of drugs, especially in treatment methods involving radiation, will provide an advantage for both patients and clinical personnel.

References

  • [1] Wu, Y., & Wu, Y. (2017). Neutron irradiation and material damage. Fusion neutronics, 91-113.
  • [2] Konings, R., & Stoller, R. E. (2020). Comprehensive nuclear materials. Elsevier., 456–467.
  • [3] Biau, J., Chautard, E., Verrelle, P., & Dutreix, M. (2019). Altering DNA repair to improve radiation therapy: specific and multiple pathway targeting. Frontiers in oncology, 9; 1009.
  • [4] Akyıldırım, H. (2019). Calculation of Fast Neutron Shielding Parameters for Some Essential Carbohydrates. Erzincan University Journal of Science and Technology, 12(2); 1141-1148.
  • [5] Kaplan, M. F. (1989). Concrete radiation shielding. Longman Scientific and Technology, Longman Group UK Limited, Essex, London.
  • [6] Jaeger, T., & Dresner, L. (1965). Principles of radiation protection engineering, McGraw-Hill Book Company, New York.
  • [7] Hila, F. C., Jecong, J. F. M., Dingle, C. A. M., Asuncion-Astronomo, A. J., Balderas, C. V., Sagum, J. A., & Guillermo, N. R. D. (2023). ENDF/B-VIII. 0-based fast neutron removal cross sections database in Z= 1 to 92 generated via multi-layered spherical geometry. Radiation Physics and Chemistry, 206; 110770.
  • [8] Perişanoğlu, U., El-Agawany, F. I., Tekin, H. O., Kavaz, E., Zakaly, H. M., Issa, S. A., ... & Rammah, Y. S. (2021). Multiple characterization of some glassy-alloys as photon and neutron shields: In-silico Monte Carlo investigation. Materials Research Express, 8(3); 035202.
  • [9] Slimani, Y., Hamad, M. K., Olarinoye, I. O., Alajerami, Y. S., Sayyed, M. I., Almessiere, M. A., & Mhareb, M. H. A. (2021). Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties. Journal of Materials Science: Materials in Electronics, 32; 20867-20881.
  • [10] Alotaibi, B. M., Abouhaswa, A. S., Sayyed, M. I., Mahmoud, K. A., Al-Yousef, H. A., Hila, F. C., & Al-Hadeethi, Y. (2021). Structural, optical, and gamma-ray shielding properties of a newly fabricated P 2 O 5–B 2 O 3–Bi 2 O 3–Li 2 O–ZrO 2 glass system. The European Physical Journal Plus, 136; 1-22.
  • [11] Vega-Carrillo, H. R., Garcia-Reyna, M. G., Sanchez-Ortiz, A., Rio, M. D., Estefania, D., & Hernandez-Adame, L. (2022). Attenuation of Γ-Rays and Fast Neutrons in Water, Alcohol, Polyethylene, Diesel and Gasoline. Alcohol, Polyethylene, Diesel and Gasoline.
  • [12] Gili, M. B. Z., & Hila, F. C. (2021). Characterization and Radiation Shielding Properties of Philippine Natural Bentonite and Zeolite. Philippine Journal of Science, 150.
  • [13] Perişanoğlu, U., Kavaz, E., Tekin, H. O., Armoosh, S. R., Ekinci, N., & Oltulu, M. (2020). Comparison of gamma and neutron shielding competences of Fe–Cu-and brass-added Portland cement pastes: an experimental and Monte Carlo study. Applied Physics A, 126; 1-14.
  • [14] Yılmaz, E., Baltas, H., Kırıs, E., Ustabas, İ. L. K. E. R., Cevik, U. Ğ. U. R., & El-Khayatt, A. M. (2011). Gamma ray and neutron shielding properties of some concrete materials. Annals of Nuclear Energy, 38(10); 2204-2212.
  • [15] Sikora, P., El-Khayatt, A. M., Saudi, H. A., Chung, S. Y., Stephan, D., & Abd Elrahman, M. (2021). Evaluation of the effects of bismuth oxide (Bi2O3) micro and nanoparticles on the mechanical, microstructural and γ-ray/neutron shielding properties of Portland cement pastes. Construction and Building Materials, 284; 122758.
  • [16] Tuğrul, T. (2020). Investigation of mass attenuation coefficients, effective atomic numbers, and effective electron density for some molecules: study on chemotherapy drugs. Journal of Radiation Research and Applied Sciences, 13(1); 758-764.
  • [17] Aygün, B., & Karabulut, A. (2022). Investigation of epithermal and fast neutron shielding properties of Some High Entropy Alloys Containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science, 8(2); 37-44.
  • [18] Shultis, J. K., & Faw, R. E. (2016). Fundamentals of Nuclear Science and Engineering Third Edition. CRC press.
  • [19] Martin, J. E. (2000). Physics for radiation protection. First printing.Wiley, New York.
  • [20] Zoller, L. K. (1964). Fast-neutron-removal cross sections. Nucleonics (US) Ceased publication, 22.
  • [21] Glasstone, S., & Sesonske, A. (1986). Nuclear Reactor Engineering, third ed.
  • [22] Profio, A. E. (1979). Radiation shielding and dosimetry. Wiley, New York.
  • [23] Wood, J. (1982). Computational Methods in Reactor Shielding. Pergamon Press, New York.
  • [24] Zali, N. M., Yazid, H., & Ahmad, M. H. A. R. M. (2018). Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites. In IOP Conference Series: Materials Science and Engineering 298(1);012018.
  • [25] Aygün, B., & Karabulut, A. (2020). The interaction of neutron and gamma radiation with some cancer drug effect ingredients. Eastern Anatolian Journal of Science, 6(2), 35-43.
  • [26] Lechner, A. (2018). CERN: Particle interactions with matter. CERN Yellow Rep. School Proc., 5, 47.
  • [27] El-Samrah, M. G., El-Mohandes, A. M., El-Khayatt, A. M., & Chidiac, S. E. (2021). MRCsC: A user-friendly software for predicting shielding effectiveness against fast neutrons. Radiation Physics and Chemistry, 182, 109356.
  • [28] Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496.
  • [29] Berger, M. J., & Hubbell, J. H. (1987). XCOM: Photon cross sections on a personal computer (No. NBSIR-87-3597). National Bureau of Standards, Washington, DC (USA). Center for
There are 29 citations in total.

Details

Primary Language English
Subjects Facial Plastic Surgery
Journal Section Research Article
Authors

Turan Şahmaran 0000-0003-3708-6162

Taylan Tuğrul 0000-0002-0557-1334

Early Pub Date November 29, 2023
Publication Date December 31, 2023
Submission Date September 25, 2023
Acceptance Date November 28, 2023
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

APA Şahmaran, T., & Tuğrul, T. (2023). Investigation of Shielding Parameters of Fast Neutrons for Some Chemotherapy Drugs by Different Calculation Methods. International Journal of Computational and Experimental Science and Engineering, 9(4), 388-393.