Research Article
BibTex RIS Cite

Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models

Year 2025, Volume: 75 Issue: 1, 1 - 16, 14.07.2025
https://doi.org/10.26650/ISTJECON2023-1366172

Abstract

Macroeconomic variables are important in both following cyclical economic developments and answering the questions of decision-makers and investors about the future. In this context, investigating the industrial production index dynamics over time provides rapid and important signals about the general economic prospects. Therefore, the effects of the COVID-19 outbreak on the forecasting performance of economic variables have been increasingly investigated in the literature. This study examines the forecasting performance differences between time series and machine learning models for the Turkish Manufacturing Industrial Production Index) across the pre- and post-COVID-19 periods. Using econometric and machine learning methods, we identified that the time series models performed better before COVID-19, while the machine learning models excelled post-COVID-19. According to the results for the preCOVID-19 period, the ARDL model, which is a member of the time series model family, produces the best results in terms of forecast performance criteria, however the Principal Component Analysis model, which is a member of the machine learning model family, is found to be the best performing model for the post-COVID-19 period. This finding implies that the forecast performance of the time series and machine learning models is different depending on the COVID-19 outbreak. Time series models produce robust forecast performance before the COVID-19 period, whereas machine learning family member models produce robust results after the COVID-19 period for the Turkish Manufacturing Industrial Production Index variable. These results highlight the shifting utility of model families under economic disruption, offering insights for policymakers and forecasters.

JEL Classification : C4 , C45

References

  • Alencar, A. P., & Rocha, F. M. M. (2016). Forecasting the Brazilian Industrial Production Index with Leveland Trend Change after the Crisis and SARIMA Models. International Journal of Statistics & Economics, 17(1), 22-29. google scholar
  • ALtig, D., Baker, S., Barrero, J. M., BLoom, N., Bunn, P., Chen, S., Davis, S. J., Leather, J., Meyer, B., MihayLov, E., Mizen, P., Parker, N., RenauLt, T., Smietanka, P., & Thwaites, G. (2020). Economic uncertainty before and during the COVID-19 pandemic. Journal of Public Economics, 191, 104274. https://doi.org/10.1016/j.jpubeco.2020.104274 google scholar
  • Aminian, F., Suarez, E. D., Aminian, M., & Walz, D. T. (2006). Forecasting economic data using neural networks. Computational Economics, 28(1), 71-88. https://doi.org/10.1007/s10614-006-9041-7 google scholar
  • AprigLiano, V. (2020). A Large Bayesian VAR with a bLock-specific shrinkage: A forecasting appLication for ItaLian industriaL production. Journal of Forecasting, 39(8), 1291-1304. https://doi.org/10.1002/for.2687 google scholar
  • Babkin, A. V., KarLina, E. P., & Epifanova, N. S. (2016). NeuraL networks as a tool of forecasting of socioeconomic systems strategic deveL-opment. Proceedings of the 28th International Business Information Management Association Conference-Vision 2020: Innovation Management, Development Sustainability, and Competitive Economic Growth, 207, 11-17. doi:10.1016/j.sbspro.2015.10.096 google scholar
  • Bair, E., Hastie, T., PauL, D., & Tibshirani, R. (2006). Prediction by supervised principaL components. Journal of the American Statistical Association. https://doi.org/10.1198/016214505000000628 google scholar
  • Barışık, S., & Yayar, R. (2012). Sanayi üretim endeksini etkileyen faktörlerin ekonometrik analizi. İktisat İşletme ve Finans, 27(316). doi:10.3848/iif.2012.316.3342 google scholar
  • Bianchi, C., Carta, A., Fantazzini, D., ELena De GiuLi, M., & Maggi, M. A. (2010). A copuLa-VAR-X approach for industriaL production modeLLing and forecasting. Applied Economics, 42(25), 3267-3277. doi:10.1080/00036840802112349 google scholar
  • BiLdirici, M., Bayazit, N. G., & Ucan, Y. (2020). AnaLysing crude oiL prices under the impact of COVID-19 by using LstargarchLstm. Energies, 13(11). doi:10.3390/en13112980 google scholar
  • Bodo, G., Cividini, A., & Signorini, L. F. (1991). Forecasting the Italian industrial production index in real time. Journal of Forecasting, 10(3), 285-299. https://doi.org/l0.1002/for.3980100305 google scholar
  • Bodo, Giorgio, GoLinelli, R., & Parigi, G. (2000). Forecasting industrial production in the Euro area. Empirical Economics, 25(4), 541-561. https://doi.org/10.1007/s001810000032 google scholar
  • Bodo, Giorgio, & Signorini, L. F. (1987). Short-term forecasting of the industriaL production index. International Journal of Forecasting. https://doi.org/10.1016/0169-2070(87)90006-9 google scholar
  • BradLey, M. D., & Jansen, D. W. (2004). Forecasting using a nonlinear dynamic modeL of stock returns and industriaL production. International Journal of Forecasting, 20(2), 321-342. doi:10.1016/j.ijforecast.2004.09.007 google scholar
  • Breiman, L. (1996). Bagging predictors. Machine Learning. https://doi.org/10.1023/A:1018054314350 google scholar
  • Breiman, L. (2001). Random forests. Machine Learning. https://doi.org/10.1023/A:1010933404324 google scholar
  • Breiman, L., Friedman, J. H., OLshen, R. A., & Stone, C. J. (1984). CLassification and regression trees. In Classification and Regression Trees. https://doi.org/10.1201/9781315139470 google scholar
  • BuLLigan, G., GoLineLLi, R., & Parigi, G. (2010). Forecasting monthLy industriaL production in reaL-time: From singLe equations to factor-based modeLs. Empirical Economics. https://doi.org/10.1007/s00181-009-0305-7 google scholar
  • Dan Foresee, F., & Hagan, M. T. (1997). Gauss-Newton approximation to bayesian Learning. IEEE International Conference on Neural Networks-Conference Proceedings. https://doi.org/10.1109/ICNN.1997.614194 google scholar
  • Davies, S. W., & Scott, T. W. K. (1973). Forecasting industriaL production. National Institute Economic Review, 66(1), 54-68. https://doi. org/10.1177/002795017306600104 google scholar
  • De Santis, R. A., & Van der Veken, W. (2020). Forecasting macroeconomic risk in real time: Great and COVID-19 Recessions. https://doi. org/10.2866/019813 google scholar
  • ErtuğruL, H. M., & GebeşoğLu, P. F. (2020). The effect of a private pension scheme on savings: A case study for Turkey. Borsa Istanbul Review, 20(2). https://doi.org/10.1016/j.bir.2019.12.001 google scholar
  • ErtugruL, H. M., & Mangir, F. (2015). The tourism-Led growth hypothesis: empiricaL evidence from Turkey. Current Issues in Tourism, 18(7). https://doi.org/10.1080/13683500.2013.868409 google scholar
  • ErtuğruL, H. M., & Seven, Ü. (2021). Dynamic spillover anaLysis of internationaL and Turkish food prices. International Journal of Finance and Economics. doi:10.1002/ijfe.2517 google scholar
  • Günay, M. (2018). Forecasting industriaL production and inflation in Turkey using factor modeLs. Central Bank Review, 18(4), 149-161. https://doi.org/10.1016/j.cbrev.2018.11.003 google scholar
  • Güngör, B. O., ErtuğruL, H. M., & Soytaş, U. (2021). Impact of COVID-19 outbreak on Turkish petroL consumption. Technological Forecasting and Social Change, 166, 120637. https://doi.org/10.1016/j.techfore.2021.120637 google scholar
  • Haraguchi, N., Cheng, C. F. C., & Smeets, E. (2017). The Importance of Manufacturing in Economic DeveLopment: Has It Changed? World Development. https://doi.org/10.1016/j.worLddev.2016.12.013 google scholar
  • Hassani, H., Heravi, S., & ZhigLjavsky, A. (2009). Forecasting European industriaL production with singuLar spectrum anaLysis. International Journal of Forecasting, 25(1), 103-118. doi:10.1016/j.ijforecast.2008.09.007 google scholar
  • Heravi, S., Osborn, D. R., & BirchenhaLL, C. R. (2004). Linear versus neuraL network forecasts for the European industriaL production series. International Journal of Forecasting, 20(3), 435-446. https://doi.org/10.1016/S0169-2070(03)00062-1 google scholar
  • Jena, P. R., Majhi, R., KaLLi, R., Managi, S., & Majhi, B. (2021). Impact of COVID-19 on the GDP of major economies: AppLication of the artificiaL neuraL network forecaster. Economic Analysis and Policy, 69, 324-339. https://doi.org/10.1016/j.eap.2020.12.013 google scholar
  • JoLLiffe, I. T. (1982). A Note on the Use of PrincipaL Components in Regression. Applied Statistics. https://doi.org/10.2307/2348005 google scholar
  • Larson, W. D., & SincLair, T. M. (2021). Nowcasting unempLoyment insurance cLaims in the time of COVID-19. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2021.01.001 google scholar
  • MacKay, D. J. C. (1992). Bayesian InterpoLation. Neural Computation. doi:10.1162/neco.1992.4.3.415 google scholar
  • Maher, J. E. (1957). Forecasting IndustriaL Production. Journal of Political Economy, 65(2), 158-165. https://doi.org/10.1086/257899 google scholar
  • Moody, J. (2012). Forecasting the Economy with NeuraL Nets: A Survey of Challenges and SoLutions. In G. B. Orr & K.-R. MüLLer (Eds.), Neural Networks: Tricks of the Trade (pp. 343-367). Springer-VerLag. doi:10.1007/978-3-642-35289-8_22 google scholar
  • Moody, J. (1995). Economic forecasting : chaLLenges and neuraL network soLutions Economic Forecasting: ChaLLenges and NeuraL Network SoLutions. International Symposium on Artificial Neural Networks, December, 1-8. http://digitaLcommons.ohsu.edu/csetech%5 Cnhttp://digitaLcommons.ohsu.edu/csetech/266 google scholar
  • Moody, J., Levin, U., & Rehfuss, S. (1993). Predicting the U . S . Index of Industrial Production ( Extended Abstract ). In M. Novak (Ed.), PASE '93: Parallel Applications in Statistics and Economics (VoL. 3, Issue 6, pp. 791-794). VSP International Science PubLishers. google scholar
  • Moore, G. H. (1950). Statistical Indicators of Cyclical Revivals and Recession. google scholar
  • Nguyen, D., & Widrow, B. (1990). Improving the Learning speed of 2-Layer neuraL networks by choosing initiaL vaLues of the adaptive weights. IJCNN. International Joint Conference on Neural Networks. https://doi.org/10.1109/ijcnn.1990.137819 google scholar
  • NikoLopouLos, K., Punia, S., Schafers, A., TsinopouLos, C., & VasiLakis, C. (2021). Forecasting and pLanning during a pandemic: COVID-19 growth rates, suppLy chain disruptions, and governmentaL decisions. European Journal of Operational Research, 290(1), 99-115. doi:10.1016/j.ejor.2020.08.001 google scholar
  • Öncel Çekim, H. (2018). Türkiye’de sanayi üretim endeksinin zaman serileri yöntemi iLe inceLenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 1-8. https://doi.org/10.25092/baunfbed.423143 google scholar
  • PoLat, Ö., & TemurLenk, S. (2011). Yapay Sinir AğLarı MetodoLojisi İLe Makroekonomik Zaman SeriLerinde Öngörü ModeLLemesi. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1(2), 98-106. google scholar
  • Primiceri, G. E., & TambaLotti, A. (2020). Macroeconomic Forecasting in the Time of COVID-19. Working Paper, June. google scholar
  • QuinLan, J. R. (1992). Learning with continuous cLasses. Australian Joint Conference on Artificial Intelligence. google scholar
  • QuinLan, J. R. (1993). Combining Instance-Based and ModeL-Based Learning. In Machine Learning Proceedings 1993. doi:10.1016/ b978-1-55860-307-3.50037-x google scholar
  • Ripley, B. D. (1996). Pattern recognition and neural networks. In Pattern Recognition and Neural Networks. https://doi.org/10.1017/CBO 9780511812651 google scholar
  • SiLiverstovs, B., & van Dijk, D. (2002). Forecasting Industrial Production with Linear, NonLinear, and StructuraL Change Models. Econo-metric Institute Report EI 2003-16. google scholar
  • StekLer, H. O. (1961). Forecasting Industrial Production. Journal of the American Statistical Association, 56(296), 869-877. https://doi.org/ 10.1080/01621459.1961.10482131 google scholar
  • Stock, J. H., & Watson, M. W. (2006). Forecasting with Many Predictors. Handbook of Economic Forecasting, 1(05), 515-554. https://doi. org/10.1016/S1574-0706(05)01010-4 google scholar
  • Terasvirta, T. (1984). Short-term forecasting of industrial production by means of quick indicators. Journal of Forecasting, 3(4), 409-416. https://doi.org/10.1002/for.3980030404 google scholar
  • Thury, G., & Witt, S. F. (1998). Forecasting industriaL production using structural time series models. Omega, 26(6), 751-767. https://doi. org/10.1016/S0305-0483(98)00024-3 google scholar
  • Tipping, M. E. (2001). Sparse Bayesian Learning and the ReLevance Vector Machine. Journal of Machine Learning Research. https://doi. org/10.1162/15324430152748236 google scholar
  • VenabLes, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S Fourth edition by. In World (Vol. 53, Issue March). google scholar
  • Zhang, G. P., & Qi, M. (2005). NeuraL network forecasting for seasonaL and trend time series. European Journal of Operational Research, 160(2), 501-514. doi:10.1016/j.ejor.2003.08.037 google scholar
  • Zhang, H., Song, H., Wen, L., & Liu, C. (2021). Forecasting tourism recovery amid COVID-19. Annals of Tourism Research, 87, 103149. https:// doi.org/10.1016/j.annaLs.2021.103149 google scholar
  • Zou, H., & Hastie, T. (2005). ReguLarization and variabLe seLection via the eLastic net. Journal of the Royal Statistical Society. Series B: Statistical Methodology. https://doi.org/10.1111/j.1467-9868.2005.00503.x google scholar
Year 2025, Volume: 75 Issue: 1, 1 - 16, 14.07.2025
https://doi.org/10.26650/ISTJECON2023-1366172

Abstract

References

  • Alencar, A. P., & Rocha, F. M. M. (2016). Forecasting the Brazilian Industrial Production Index with Leveland Trend Change after the Crisis and SARIMA Models. International Journal of Statistics & Economics, 17(1), 22-29. google scholar
  • ALtig, D., Baker, S., Barrero, J. M., BLoom, N., Bunn, P., Chen, S., Davis, S. J., Leather, J., Meyer, B., MihayLov, E., Mizen, P., Parker, N., RenauLt, T., Smietanka, P., & Thwaites, G. (2020). Economic uncertainty before and during the COVID-19 pandemic. Journal of Public Economics, 191, 104274. https://doi.org/10.1016/j.jpubeco.2020.104274 google scholar
  • Aminian, F., Suarez, E. D., Aminian, M., & Walz, D. T. (2006). Forecasting economic data using neural networks. Computational Economics, 28(1), 71-88. https://doi.org/10.1007/s10614-006-9041-7 google scholar
  • AprigLiano, V. (2020). A Large Bayesian VAR with a bLock-specific shrinkage: A forecasting appLication for ItaLian industriaL production. Journal of Forecasting, 39(8), 1291-1304. https://doi.org/10.1002/for.2687 google scholar
  • Babkin, A. V., KarLina, E. P., & Epifanova, N. S. (2016). NeuraL networks as a tool of forecasting of socioeconomic systems strategic deveL-opment. Proceedings of the 28th International Business Information Management Association Conference-Vision 2020: Innovation Management, Development Sustainability, and Competitive Economic Growth, 207, 11-17. doi:10.1016/j.sbspro.2015.10.096 google scholar
  • Bair, E., Hastie, T., PauL, D., & Tibshirani, R. (2006). Prediction by supervised principaL components. Journal of the American Statistical Association. https://doi.org/10.1198/016214505000000628 google scholar
  • Barışık, S., & Yayar, R. (2012). Sanayi üretim endeksini etkileyen faktörlerin ekonometrik analizi. İktisat İşletme ve Finans, 27(316). doi:10.3848/iif.2012.316.3342 google scholar
  • Bianchi, C., Carta, A., Fantazzini, D., ELena De GiuLi, M., & Maggi, M. A. (2010). A copuLa-VAR-X approach for industriaL production modeLLing and forecasting. Applied Economics, 42(25), 3267-3277. doi:10.1080/00036840802112349 google scholar
  • BiLdirici, M., Bayazit, N. G., & Ucan, Y. (2020). AnaLysing crude oiL prices under the impact of COVID-19 by using LstargarchLstm. Energies, 13(11). doi:10.3390/en13112980 google scholar
  • Bodo, G., Cividini, A., & Signorini, L. F. (1991). Forecasting the Italian industrial production index in real time. Journal of Forecasting, 10(3), 285-299. https://doi.org/l0.1002/for.3980100305 google scholar
  • Bodo, Giorgio, GoLinelli, R., & Parigi, G. (2000). Forecasting industrial production in the Euro area. Empirical Economics, 25(4), 541-561. https://doi.org/10.1007/s001810000032 google scholar
  • Bodo, Giorgio, & Signorini, L. F. (1987). Short-term forecasting of the industriaL production index. International Journal of Forecasting. https://doi.org/10.1016/0169-2070(87)90006-9 google scholar
  • BradLey, M. D., & Jansen, D. W. (2004). Forecasting using a nonlinear dynamic modeL of stock returns and industriaL production. International Journal of Forecasting, 20(2), 321-342. doi:10.1016/j.ijforecast.2004.09.007 google scholar
  • Breiman, L. (1996). Bagging predictors. Machine Learning. https://doi.org/10.1023/A:1018054314350 google scholar
  • Breiman, L. (2001). Random forests. Machine Learning. https://doi.org/10.1023/A:1010933404324 google scholar
  • Breiman, L., Friedman, J. H., OLshen, R. A., & Stone, C. J. (1984). CLassification and regression trees. In Classification and Regression Trees. https://doi.org/10.1201/9781315139470 google scholar
  • BuLLigan, G., GoLineLLi, R., & Parigi, G. (2010). Forecasting monthLy industriaL production in reaL-time: From singLe equations to factor-based modeLs. Empirical Economics. https://doi.org/10.1007/s00181-009-0305-7 google scholar
  • Dan Foresee, F., & Hagan, M. T. (1997). Gauss-Newton approximation to bayesian Learning. IEEE International Conference on Neural Networks-Conference Proceedings. https://doi.org/10.1109/ICNN.1997.614194 google scholar
  • Davies, S. W., & Scott, T. W. K. (1973). Forecasting industriaL production. National Institute Economic Review, 66(1), 54-68. https://doi. org/10.1177/002795017306600104 google scholar
  • De Santis, R. A., & Van der Veken, W. (2020). Forecasting macroeconomic risk in real time: Great and COVID-19 Recessions. https://doi. org/10.2866/019813 google scholar
  • ErtuğruL, H. M., & GebeşoğLu, P. F. (2020). The effect of a private pension scheme on savings: A case study for Turkey. Borsa Istanbul Review, 20(2). https://doi.org/10.1016/j.bir.2019.12.001 google scholar
  • ErtugruL, H. M., & Mangir, F. (2015). The tourism-Led growth hypothesis: empiricaL evidence from Turkey. Current Issues in Tourism, 18(7). https://doi.org/10.1080/13683500.2013.868409 google scholar
  • ErtuğruL, H. M., & Seven, Ü. (2021). Dynamic spillover anaLysis of internationaL and Turkish food prices. International Journal of Finance and Economics. doi:10.1002/ijfe.2517 google scholar
  • Günay, M. (2018). Forecasting industriaL production and inflation in Turkey using factor modeLs. Central Bank Review, 18(4), 149-161. https://doi.org/10.1016/j.cbrev.2018.11.003 google scholar
  • Güngör, B. O., ErtuğruL, H. M., & Soytaş, U. (2021). Impact of COVID-19 outbreak on Turkish petroL consumption. Technological Forecasting and Social Change, 166, 120637. https://doi.org/10.1016/j.techfore.2021.120637 google scholar
  • Haraguchi, N., Cheng, C. F. C., & Smeets, E. (2017). The Importance of Manufacturing in Economic DeveLopment: Has It Changed? World Development. https://doi.org/10.1016/j.worLddev.2016.12.013 google scholar
  • Hassani, H., Heravi, S., & ZhigLjavsky, A. (2009). Forecasting European industriaL production with singuLar spectrum anaLysis. International Journal of Forecasting, 25(1), 103-118. doi:10.1016/j.ijforecast.2008.09.007 google scholar
  • Heravi, S., Osborn, D. R., & BirchenhaLL, C. R. (2004). Linear versus neuraL network forecasts for the European industriaL production series. International Journal of Forecasting, 20(3), 435-446. https://doi.org/10.1016/S0169-2070(03)00062-1 google scholar
  • Jena, P. R., Majhi, R., KaLLi, R., Managi, S., & Majhi, B. (2021). Impact of COVID-19 on the GDP of major economies: AppLication of the artificiaL neuraL network forecaster. Economic Analysis and Policy, 69, 324-339. https://doi.org/10.1016/j.eap.2020.12.013 google scholar
  • JoLLiffe, I. T. (1982). A Note on the Use of PrincipaL Components in Regression. Applied Statistics. https://doi.org/10.2307/2348005 google scholar
  • Larson, W. D., & SincLair, T. M. (2021). Nowcasting unempLoyment insurance cLaims in the time of COVID-19. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2021.01.001 google scholar
  • MacKay, D. J. C. (1992). Bayesian InterpoLation. Neural Computation. doi:10.1162/neco.1992.4.3.415 google scholar
  • Maher, J. E. (1957). Forecasting IndustriaL Production. Journal of Political Economy, 65(2), 158-165. https://doi.org/10.1086/257899 google scholar
  • Moody, J. (2012). Forecasting the Economy with NeuraL Nets: A Survey of Challenges and SoLutions. In G. B. Orr & K.-R. MüLLer (Eds.), Neural Networks: Tricks of the Trade (pp. 343-367). Springer-VerLag. doi:10.1007/978-3-642-35289-8_22 google scholar
  • Moody, J. (1995). Economic forecasting : chaLLenges and neuraL network soLutions Economic Forecasting: ChaLLenges and NeuraL Network SoLutions. International Symposium on Artificial Neural Networks, December, 1-8. http://digitaLcommons.ohsu.edu/csetech%5 Cnhttp://digitaLcommons.ohsu.edu/csetech/266 google scholar
  • Moody, J., Levin, U., & Rehfuss, S. (1993). Predicting the U . S . Index of Industrial Production ( Extended Abstract ). In M. Novak (Ed.), PASE '93: Parallel Applications in Statistics and Economics (VoL. 3, Issue 6, pp. 791-794). VSP International Science PubLishers. google scholar
  • Moore, G. H. (1950). Statistical Indicators of Cyclical Revivals and Recession. google scholar
  • Nguyen, D., & Widrow, B. (1990). Improving the Learning speed of 2-Layer neuraL networks by choosing initiaL vaLues of the adaptive weights. IJCNN. International Joint Conference on Neural Networks. https://doi.org/10.1109/ijcnn.1990.137819 google scholar
  • NikoLopouLos, K., Punia, S., Schafers, A., TsinopouLos, C., & VasiLakis, C. (2021). Forecasting and pLanning during a pandemic: COVID-19 growth rates, suppLy chain disruptions, and governmentaL decisions. European Journal of Operational Research, 290(1), 99-115. doi:10.1016/j.ejor.2020.08.001 google scholar
  • Öncel Çekim, H. (2018). Türkiye’de sanayi üretim endeksinin zaman serileri yöntemi iLe inceLenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 1-8. https://doi.org/10.25092/baunfbed.423143 google scholar
  • PoLat, Ö., & TemurLenk, S. (2011). Yapay Sinir AğLarı MetodoLojisi İLe Makroekonomik Zaman SeriLerinde Öngörü ModeLLemesi. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1(2), 98-106. google scholar
  • Primiceri, G. E., & TambaLotti, A. (2020). Macroeconomic Forecasting in the Time of COVID-19. Working Paper, June. google scholar
  • QuinLan, J. R. (1992). Learning with continuous cLasses. Australian Joint Conference on Artificial Intelligence. google scholar
  • QuinLan, J. R. (1993). Combining Instance-Based and ModeL-Based Learning. In Machine Learning Proceedings 1993. doi:10.1016/ b978-1-55860-307-3.50037-x google scholar
  • Ripley, B. D. (1996). Pattern recognition and neural networks. In Pattern Recognition and Neural Networks. https://doi.org/10.1017/CBO 9780511812651 google scholar
  • SiLiverstovs, B., & van Dijk, D. (2002). Forecasting Industrial Production with Linear, NonLinear, and StructuraL Change Models. Econo-metric Institute Report EI 2003-16. google scholar
  • StekLer, H. O. (1961). Forecasting Industrial Production. Journal of the American Statistical Association, 56(296), 869-877. https://doi.org/ 10.1080/01621459.1961.10482131 google scholar
  • Stock, J. H., & Watson, M. W. (2006). Forecasting with Many Predictors. Handbook of Economic Forecasting, 1(05), 515-554. https://doi. org/10.1016/S1574-0706(05)01010-4 google scholar
  • Terasvirta, T. (1984). Short-term forecasting of industrial production by means of quick indicators. Journal of Forecasting, 3(4), 409-416. https://doi.org/10.1002/for.3980030404 google scholar
  • Thury, G., & Witt, S. F. (1998). Forecasting industriaL production using structural time series models. Omega, 26(6), 751-767. https://doi. org/10.1016/S0305-0483(98)00024-3 google scholar
  • Tipping, M. E. (2001). Sparse Bayesian Learning and the ReLevance Vector Machine. Journal of Machine Learning Research. https://doi. org/10.1162/15324430152748236 google scholar
  • VenabLes, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S Fourth edition by. In World (Vol. 53, Issue March). google scholar
  • Zhang, G. P., & Qi, M. (2005). NeuraL network forecasting for seasonaL and trend time series. European Journal of Operational Research, 160(2), 501-514. doi:10.1016/j.ejor.2003.08.037 google scholar
  • Zhang, H., Song, H., Wen, L., & Liu, C. (2021). Forecasting tourism recovery amid COVID-19. Annals of Tourism Research, 87, 103149. https:// doi.org/10.1016/j.annaLs.2021.103149 google scholar
  • Zou, H., & Hastie, T. (2005). ReguLarization and variabLe seLection via the eLastic net. Journal of the Royal Statistical Society. Series B: Statistical Methodology. https://doi.org/10.1111/j.1467-9868.2005.00503.x google scholar
There are 55 citations in total.

Details

Primary Language English
Subjects Economic Theory (Other)
Journal Section Research Article
Authors

Ufuk Bingöl 0000-0003-1834-842X

Hasan Murat Ertuğrul 0000-0001-9822-4683

Necmettin Alpay Koçak 0000-0002-4232-9985

Publication Date July 14, 2025
Submission Date September 27, 2023
Published in Issue Year 2025 Volume: 75 Issue: 1

Cite

APA Bingöl, U., Ertuğrul, H. M., & Koçak, N. A. (2025). Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models. İstanbul İktisat Dergisi, 75(1), 1-16. https://doi.org/10.26650/ISTJECON2023-1366172
AMA Bingöl U, Ertuğrul HM, Koçak NA. Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models. İstanbul İktisat Dergisi. July 2025;75(1):1-16. doi:10.26650/ISTJECON2023-1366172
Chicago Bingöl, Ufuk, Hasan Murat Ertuğrul, and Necmettin Alpay Koçak. “Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models”. İstanbul İktisat Dergisi 75, no. 1 (July 2025): 1-16. https://doi.org/10.26650/ISTJECON2023-1366172.
EndNote Bingöl U, Ertuğrul HM, Koçak NA (July 1, 2025) Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models. İstanbul İktisat Dergisi 75 1 1–16.
IEEE U. Bingöl, H. M. Ertuğrul, and N. A. Koçak, “Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models”, İstanbul İktisat Dergisi, vol. 75, no. 1, pp. 1–16, 2025, doi: 10.26650/ISTJECON2023-1366172.
ISNAD Bingöl, Ufuk et al. “Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models”. İstanbul İktisat Dergisi 75/1 (July 2025), 1-16. https://doi.org/10.26650/ISTJECON2023-1366172.
JAMA Bingöl U, Ertuğrul HM, Koçak NA. Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models. İstanbul İktisat Dergisi. 2025;75:1–16.
MLA Bingöl, Ufuk et al. “Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models”. İstanbul İktisat Dergisi, vol. 75, no. 1, 2025, pp. 1-16, doi:10.26650/ISTJECON2023-1366172.
Vancouver Bingöl U, Ertuğrul HM, Koçak NA. Forecasting the Turkish Manufacturing Industrial Production Index: An Empirical Comparison of Time Series and Machine Learning Models. İstanbul İktisat Dergisi. 2025;75(1):1-16.