Research Article
BibTex RIS Cite

Kırmızı Alglerden Gracilaria verrucosa'nın Biyomas Verimi ve Kimyasal Kompozisyonu Üzerine Fotoperiyot Uygulamalarının Etkisinin Belirlenmesi

Year 2023, Volume: 8 Issue: 4, 756 - 763, 31.12.2023
https://doi.org/10.35229/jaes.1226819

Abstract

Bu çalışmada kırmızı alglerden Gracilaria verrucosa (Hudson) Papenfuss tank kültür sistemlerinde 100 µmol foton m-2 s -1 ışık şiddetinde, farklı foto periyotlar (24:00, 16:08, 12:12 ve 08:16 (A:K)) uygulanarak algin büyüme hızında ve kimyasal içeriğinde meydana gelen değişimler izlenmiştir. Çalışma sonucunda deneme grupları arasında en yüksek büyüme hızı 16:8 (A:K) foto periyot uygulanan grupta bulunmuştur. Deneme gruplarının klorofil a içerikleri aydınlanma süresi arttıkça azalmıştır. Büyüme hızı arttıkça algin fikosiyanin ve fikoeritrin içeriklerinin azaldığı belirlenmiştir. Çalışmada grupların ham protein içerikleri %9,14±0,13 (24:24) ile %10,92±0,25 (12:12) arasında değişim göstermiştir. Tüm deneme gruplarının yağ içerikleri %1’den az bulunmuştur. Alg talluslarının kül içerikleri arasında istatistiksel olarak önemli derece farklılıkların olmadığı görülmüştür (p>0,05). Deneme gruplarının agar içerikleri %8,36±0,24– 13,19±1,09 arasında değişim göstermiştir. En yüksek agar içeriği 8:16 foto periyot uygulanan grupta saptanmıştır. Yüksek ışık şiddeti ve uzun aydınlanma sürelerinin algin serbest radikal temizleme aktivitesini arttırdığı çalışma sonucunda saptanmıştır. Deneme gruplarının toplam fenolik madde içerikleri ile 1,82±0,03 (8:16) ile 2,84±0,04 (24:24) mg GAE g−1 ekstrakt arasında değişim göstermiştir. En yüksek toplam flavonoid içeriği 8:16 (A:K) uygulanan grupta saptanmıştır.

Supporting Institution

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimi

Project Number

Fhd-2021-3677

Thanks

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimi tarafınfan Fhd-2021-3677 proje numaralı ve “Kırmızı Alglerden Gracilaria verrucosa’nın Biyomas Verimi ve Kimyasal Kompozisyonu Üzerine Işık Şiddeti ve Fotoperiyot Uygulamalarının Etkisinin Belirlenmesi” başlıklı proje ile desteklenmiştir

References

  • Ak, İ., Çetin, Z., Cirik, Ş. & Göksan, T. (2011). Gracilaria verrucosa (Hudson) Papenfuss culture using an agricultural organic fertilizer. Fresenius Environmental Bulletin, 20(8a), 2156-2162.
  • Ak, İ., Çankırılıgil, E.C., Türker, G., Sever, O. & Abomohra, A. (2022). Enhancement of antioxidant properties of Gongolaria barbata (Phaeophyceae) by optimization of combined light intensity and salinity stress. Phcologia, 61(6), 584-594. DOI: 10.1080/00318884.2022.2099136
  • Ak, İ. & Türker, G. (2018). Antioxidant Activity of Five Seaweed Extracts. New Knowledge Journal of Science / Novo Znanie, 7(2), 149-155.
  • Ak, İ. & Türker, G. (2019). Free Radical Scavenging Activity and Biochemical characteristics of Ulva rigida (Ulvophyceae) and Arthrospira platensis (Cyanophyceae). Turkish Journal of Agriculture- Food Science and Technology, 7, 145-149. DOI: 10.24925/turjaf.v7isp1.145-149.2789
  • Ak, İ. & Yücesan, M. (2012). Effect of light intensity on the pigment composition of Gracilaria verrucosa (Rhodophyta). Fresenius Environmental Bulletin, 21(2), 337-342.
  • AOAC. (2000). Official methods of analysis of AOAC (Association of Official Analytical Chemists) International (17th ed.), AOAC International,Gaithersburg, MD, 1298.
  • Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. DOI: 10.1016/S0023- 6438(95)80008-5
  • Briggs, M. & Smith, S. (1993). Macroalgae in aquaculture: An overview and their possible roles in shrimp culture. Proceedings of a conference on marine biotechnology in the Asia Pacific Bangkok, Thailand. 137-143p.
  • Broch, O.J. & Slagstad, D. (2012). Modelling seasonal growth and composition of the kelp Saccharina latissima. Journal of Applied Phycology, 24, 759- 776.
  • Bunsom, C. & Prathep, A. (2012). Effects of salinity, light intensity and sediment on growth, pigments, agar production and reproduction in Gracilaria tenuistipitata from Songkhla Lagoon in Thailand. Phycological Research, 60(3), 169-178. DOI: 10.1111/j.1440-1835.2012.00648.x
  • Cirik, Ş. & Cirik, S. (2017). Su Bitkileri (Deniz bitkilerinin biyolojisi, ekolojisi, yetiştirme teknikleri). İzmir, Ege Üniversitesi Su Ürünleri Fakültesi Yayınları. 15-47p.
  • Cirik, Ş., Şen, E. & Ak, İ. (2010). Brown algae Cystoseira barbata (Stackhouse) C. Agardh culture and changes in it chemical composition. Journal of fisheriessciences.com, 4(4), 354-361. DOI: 10.3153/jfscom.2010038
  • Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P. & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654-660. DOI: 10.1016/j.foodchem.2005.04.028
  • Falkowski, P.G. & LaRoche, J. (1991). Acclimation to Spectral Irradiance in Algae. Journal of Phycology, 27(1), 8-14. DOI: 10.1111/j.0022- 3646.1991.00008.x
  • FAO. (2021). The State of World Fisheries and Aquaculture 2019. Sustainability in action FAO Fisheries and Aquaculture Department, Rome, 224p.
  • Fethi, M. & Ghedifa, A.B. (2019). Optimum ranges of combined abiotic factor for Gracilaria gracilis aquaculture. Journal of Applied Phycology, 31(5), 3025-3040. https://doi.org/10.1007/s10811-019- 01826-5.
  • Folch, J., Lees, M. & Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509.
  • Guillard, R.R.L. (1975). Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith, W.L., Chanley, M.H. (Ed), Culture of Marine Invertebrate Animals. Springer, Boston, 29-60p.
  • Hanisak, M.D. (1987). Cultivation of Gracilaria and other macroalgae in Florida for energy production. In Bird, K.T., Benson, P.H. (Ed), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam, 191-218p.
  • Hurd, C.L., Harrison, P.J., Bischof, K. & Lobban, C. S. (2014). Seaweed Ecology and Physiology. Cambridge, Cambridge University Press.15- 215p.
  • Jeffrey, S.W. & Humphrey, G.F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191-194. DOI: 10.1016/S0015-3796(17)30778-3
  • Kim, J. K., Mao, Y., Kraemer, G. & Yarish, C. (2015). Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture, 436, 52-57. DOI: 10.1016/j.aquaculture.2014.10.037
  • Kim, Y.S., Choi, H.G. & Nam, K.W. (2006). Phenology of Chondrus ocellatus in Cheongsapo near Busan, Korea. Journal of Applied Phycology, 18, 551- 556.
  • Koru, E., Cirik, S., Turan, G., Ak, İ. & Başaran, A. (2008). Gracilaria verrucosa (Hudson) Papenfuss Kültürüne Farklı Işık Yoğunluklarının Etkisi. Ege Journal of Fisheries and Aquatic Sciences, 25(3), 187-190.
  • Lakshminarayana, R., Vijay, K., Ambedkar, R., Ranga Rao, A. & Ravishankar, G.A. (2022). Biological Activities and Health Benefits of Seaweed Carotenoids with Special Reference to Fucoxanthin. In: Ranga Rao, A., Ravishankar, G.A. (Ed), Sustainable Global Resources of Seaweeds Volume 2. Springer, Cham, 539-558p.
  • Lüning, K. (2005). Endogenus rhytms and day length effects in macroalgal development. In: Andersen ,R.A. (Ed.). Algal culturing techniques. Elsevier Academic Press, San Diego, 347-364p.
  • Machalek, K. M., Davison, I.R., & Falkowski, P. G. (1996). Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant, Cell & Environment, 19(9), 1005-1016. DOI: 10.1111/j.1365-3040.1996.tb00207.x
  • Marinho-Soriano, E. & Bourret, E. (2003). Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresource Technology, 90(3), 329-333. DOI: 10.1016/s0960-8524(03)00112-3
  • Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A.A. & Moreira, W.S.C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18), 2402- 2406. DOI: 10.1016/j.biortech.2005.10.014
  • Mensi, F. (2019). Agar yield from R-phycoerythrin extraction by-product of the red alga Gracilaria verrucosa. Journal of Applied Phycology, 31(1), 741-751. DOI: 10.1007/s10811-018-1533-z
  • Öztaşkent, C. & Ak, İ. (2021). Effect of LED light sources on the growth and chemical composition of brown seaweed Treptacantha barbata. Aquaculture International, 29(1), 193-205. DOI: 10.1007/s10499-020-00619-9
  • Percival, E. & Young, M. (1974). Carbohydrates of the brown seaweeds: Part III. Desmarestia aculeata. Carbohydrate Research, 32(2), 195-201. DOI: 10.1016/S0008-6215(00)82097-2
  • Price, M.L., Van Scoyoc, S. & Butler, L.G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of agricultural and food chemistry, 26(5), 1214- 1218. DOI: 10.1021/jf60219a031
  • Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., Cazin, M., Cazin, J.- C., Bailleul, F. & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72(1), 35-42. DOI: 10.1016/S0378- 8741(00)00196-3
  • Rodríguez-Sánchez, R., Ortiz-Butrón, R., Blas- Valdivia, V., Hernández-García, A. & Cano- Europa, E. (2012). Phycobiliproteins or c- phycocyanin of Arthrospira (Spirulina) maxima protect against hgcl2-caused oxidative stress and renal damage. Food Chemistry, 135(4), 2359- 2365. DOI: 10.1016/j.foodchem.2012.07.063
  • Tanna, B., Choudhary, B., Mishra, A., Yadav, S., Chauhan, O.P., Elansary, H.O., Shokralla, S., Zin El-Abedin, T.K. & Mahmoud, E.A. (2022). Biochemical and Anti-proliferative activities of seven abundant tropical red seaweeds confirm nutraceutical potential of Grateloupia indica. Arabian Journal of Chemistry, 15(6), 103868. DOI: 10.1016/j.arabjc.2022.103868.
  • Troell, M., Halling, C., Nilsson, A., Buschmann, A. H., Kautsky, N. & Kautsky, L. (1997). Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture, 156(1), 45-61. DOI: 10.1016/S0044-8486(97)00080-X
  • Wang, L., Shen, Z. Mu, H. Lin, Y. Zhang, J. & Jiang, X. (2017). Impact of alkali pretreatment on yield, physico-chemical and gelling properties of high quality agar from Gracilaria tenuistipitata. Food Hydrocolloids, 70, 356-362. DOI: 10.1016/j.foodhyd.2016.11.042
  • Weinberger, F., Buchholz, B., Karez, R. & Wahl, M. (2008). The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquatic Biology, 3(3), 251-264. DOI: 10.3354/ab00083
  • Wu, H. (2016). Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta). BioMed Research International, 2016, 7383918. DOI: 10.1155/2016/7383918
  • Zhang, W., Zhu, C. & Chen, S. (2020). Effects of light quality and photoperiod on growth and photosynthetic pigment content of a Rhodophyta, Gloiopeltis furcata. Fisheries Science, 86(2), 367- 373. DOI: 10.1007/s12562-020-01400-w.

Effect of Photoperiod Applications on Biomass Yield and Chemical Composition of Red Algae Gracilaria verrucosa

Year 2023, Volume: 8 Issue: 4, 756 - 763, 31.12.2023
https://doi.org/10.35229/jaes.1226819

Abstract

In this study, the changes in the growth rate and chemical content of algal extracts from Gracilaria verrucosa (Hudson) were examined under Papenfuss tank culture systems with 100 µmol photon m-2 s -1 light intensity and different photo periods (24:00, 16:08, 12:12 and 08:16 (L:D)). As a result of the study, the highest growth rate among the experimental groups was found in the 16:8 (L:D) photoperiod group. Chlorophyll a content of the groups decreased as the illumination time increased while phycocyanin, phycoerythrin contents decreased as the growth rate increased. The crude protein content of the groups varied between 9.14±0.13 (24:24) and 10.92±0.25 (12:12). Fat content of all groups was found to less than 1%. There was no statistically significant difference in ash content of algae thallus (p>0.05). The agar contents of the experimental groups varied between %8.36±0.24-13.19±1.09. The highest agar content was found in the group treated with the 8:16 photo period. As a result of the study, it was determined that high light intensity and long illumination durations increase the free radical scavenging activity of algae. The total phenolic content of the experimental groups varied between 1.82±0.03 (8:16) and 2.84±0.04 (24:24) mg GAE g−1 extract. The highest total flavonoid content was found in the 8:16 (L:D) group.

Project Number

Fhd-2021-3677

References

  • Ak, İ., Çetin, Z., Cirik, Ş. & Göksan, T. (2011). Gracilaria verrucosa (Hudson) Papenfuss culture using an agricultural organic fertilizer. Fresenius Environmental Bulletin, 20(8a), 2156-2162.
  • Ak, İ., Çankırılıgil, E.C., Türker, G., Sever, O. & Abomohra, A. (2022). Enhancement of antioxidant properties of Gongolaria barbata (Phaeophyceae) by optimization of combined light intensity and salinity stress. Phcologia, 61(6), 584-594. DOI: 10.1080/00318884.2022.2099136
  • Ak, İ. & Türker, G. (2018). Antioxidant Activity of Five Seaweed Extracts. New Knowledge Journal of Science / Novo Znanie, 7(2), 149-155.
  • Ak, İ. & Türker, G. (2019). Free Radical Scavenging Activity and Biochemical characteristics of Ulva rigida (Ulvophyceae) and Arthrospira platensis (Cyanophyceae). Turkish Journal of Agriculture- Food Science and Technology, 7, 145-149. DOI: 10.24925/turjaf.v7isp1.145-149.2789
  • Ak, İ. & Yücesan, M. (2012). Effect of light intensity on the pigment composition of Gracilaria verrucosa (Rhodophyta). Fresenius Environmental Bulletin, 21(2), 337-342.
  • AOAC. (2000). Official methods of analysis of AOAC (Association of Official Analytical Chemists) International (17th ed.), AOAC International,Gaithersburg, MD, 1298.
  • Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. DOI: 10.1016/S0023- 6438(95)80008-5
  • Briggs, M. & Smith, S. (1993). Macroalgae in aquaculture: An overview and their possible roles in shrimp culture. Proceedings of a conference on marine biotechnology in the Asia Pacific Bangkok, Thailand. 137-143p.
  • Broch, O.J. & Slagstad, D. (2012). Modelling seasonal growth and composition of the kelp Saccharina latissima. Journal of Applied Phycology, 24, 759- 776.
  • Bunsom, C. & Prathep, A. (2012). Effects of salinity, light intensity and sediment on growth, pigments, agar production and reproduction in Gracilaria tenuistipitata from Songkhla Lagoon in Thailand. Phycological Research, 60(3), 169-178. DOI: 10.1111/j.1440-1835.2012.00648.x
  • Cirik, Ş. & Cirik, S. (2017). Su Bitkileri (Deniz bitkilerinin biyolojisi, ekolojisi, yetiştirme teknikleri). İzmir, Ege Üniversitesi Su Ürünleri Fakültesi Yayınları. 15-47p.
  • Cirik, Ş., Şen, E. & Ak, İ. (2010). Brown algae Cystoseira barbata (Stackhouse) C. Agardh culture and changes in it chemical composition. Journal of fisheriessciences.com, 4(4), 354-361. DOI: 10.3153/jfscom.2010038
  • Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P. & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654-660. DOI: 10.1016/j.foodchem.2005.04.028
  • Falkowski, P.G. & LaRoche, J. (1991). Acclimation to Spectral Irradiance in Algae. Journal of Phycology, 27(1), 8-14. DOI: 10.1111/j.0022- 3646.1991.00008.x
  • FAO. (2021). The State of World Fisheries and Aquaculture 2019. Sustainability in action FAO Fisheries and Aquaculture Department, Rome, 224p.
  • Fethi, M. & Ghedifa, A.B. (2019). Optimum ranges of combined abiotic factor for Gracilaria gracilis aquaculture. Journal of Applied Phycology, 31(5), 3025-3040. https://doi.org/10.1007/s10811-019- 01826-5.
  • Folch, J., Lees, M. & Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509.
  • Guillard, R.R.L. (1975). Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith, W.L., Chanley, M.H. (Ed), Culture of Marine Invertebrate Animals. Springer, Boston, 29-60p.
  • Hanisak, M.D. (1987). Cultivation of Gracilaria and other macroalgae in Florida for energy production. In Bird, K.T., Benson, P.H. (Ed), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam, 191-218p.
  • Hurd, C.L., Harrison, P.J., Bischof, K. & Lobban, C. S. (2014). Seaweed Ecology and Physiology. Cambridge, Cambridge University Press.15- 215p.
  • Jeffrey, S.W. & Humphrey, G.F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191-194. DOI: 10.1016/S0015-3796(17)30778-3
  • Kim, J. K., Mao, Y., Kraemer, G. & Yarish, C. (2015). Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture, 436, 52-57. DOI: 10.1016/j.aquaculture.2014.10.037
  • Kim, Y.S., Choi, H.G. & Nam, K.W. (2006). Phenology of Chondrus ocellatus in Cheongsapo near Busan, Korea. Journal of Applied Phycology, 18, 551- 556.
  • Koru, E., Cirik, S., Turan, G., Ak, İ. & Başaran, A. (2008). Gracilaria verrucosa (Hudson) Papenfuss Kültürüne Farklı Işık Yoğunluklarının Etkisi. Ege Journal of Fisheries and Aquatic Sciences, 25(3), 187-190.
  • Lakshminarayana, R., Vijay, K., Ambedkar, R., Ranga Rao, A. & Ravishankar, G.A. (2022). Biological Activities and Health Benefits of Seaweed Carotenoids with Special Reference to Fucoxanthin. In: Ranga Rao, A., Ravishankar, G.A. (Ed), Sustainable Global Resources of Seaweeds Volume 2. Springer, Cham, 539-558p.
  • Lüning, K. (2005). Endogenus rhytms and day length effects in macroalgal development. In: Andersen ,R.A. (Ed.). Algal culturing techniques. Elsevier Academic Press, San Diego, 347-364p.
  • Machalek, K. M., Davison, I.R., & Falkowski, P. G. (1996). Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant, Cell & Environment, 19(9), 1005-1016. DOI: 10.1111/j.1365-3040.1996.tb00207.x
  • Marinho-Soriano, E. & Bourret, E. (2003). Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresource Technology, 90(3), 329-333. DOI: 10.1016/s0960-8524(03)00112-3
  • Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A.A. & Moreira, W.S.C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18), 2402- 2406. DOI: 10.1016/j.biortech.2005.10.014
  • Mensi, F. (2019). Agar yield from R-phycoerythrin extraction by-product of the red alga Gracilaria verrucosa. Journal of Applied Phycology, 31(1), 741-751. DOI: 10.1007/s10811-018-1533-z
  • Öztaşkent, C. & Ak, İ. (2021). Effect of LED light sources on the growth and chemical composition of brown seaweed Treptacantha barbata. Aquaculture International, 29(1), 193-205. DOI: 10.1007/s10499-020-00619-9
  • Percival, E. & Young, M. (1974). Carbohydrates of the brown seaweeds: Part III. Desmarestia aculeata. Carbohydrate Research, 32(2), 195-201. DOI: 10.1016/S0008-6215(00)82097-2
  • Price, M.L., Van Scoyoc, S. & Butler, L.G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of agricultural and food chemistry, 26(5), 1214- 1218. DOI: 10.1021/jf60219a031
  • Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., Cazin, M., Cazin, J.- C., Bailleul, F. & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72(1), 35-42. DOI: 10.1016/S0378- 8741(00)00196-3
  • Rodríguez-Sánchez, R., Ortiz-Butrón, R., Blas- Valdivia, V., Hernández-García, A. & Cano- Europa, E. (2012). Phycobiliproteins or c- phycocyanin of Arthrospira (Spirulina) maxima protect against hgcl2-caused oxidative stress and renal damage. Food Chemistry, 135(4), 2359- 2365. DOI: 10.1016/j.foodchem.2012.07.063
  • Tanna, B., Choudhary, B., Mishra, A., Yadav, S., Chauhan, O.P., Elansary, H.O., Shokralla, S., Zin El-Abedin, T.K. & Mahmoud, E.A. (2022). Biochemical and Anti-proliferative activities of seven abundant tropical red seaweeds confirm nutraceutical potential of Grateloupia indica. Arabian Journal of Chemistry, 15(6), 103868. DOI: 10.1016/j.arabjc.2022.103868.
  • Troell, M., Halling, C., Nilsson, A., Buschmann, A. H., Kautsky, N. & Kautsky, L. (1997). Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture, 156(1), 45-61. DOI: 10.1016/S0044-8486(97)00080-X
  • Wang, L., Shen, Z. Mu, H. Lin, Y. Zhang, J. & Jiang, X. (2017). Impact of alkali pretreatment on yield, physico-chemical and gelling properties of high quality agar from Gracilaria tenuistipitata. Food Hydrocolloids, 70, 356-362. DOI: 10.1016/j.foodhyd.2016.11.042
  • Weinberger, F., Buchholz, B., Karez, R. & Wahl, M. (2008). The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquatic Biology, 3(3), 251-264. DOI: 10.3354/ab00083
  • Wu, H. (2016). Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta). BioMed Research International, 2016, 7383918. DOI: 10.1155/2016/7383918
  • Zhang, W., Zhu, C. & Chen, S. (2020). Effects of light quality and photoperiod on growth and photosynthetic pigment content of a Rhodophyta, Gloiopeltis furcata. Fisheries Science, 86(2), 367- 373. DOI: 10.1007/s12562-020-01400-w.
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Symposium of National Underwater Scientific and Values (USUBADES-2022), 20-22 October 2022
Authors

İlknur Ak 0000-0002-0233-0025

Melis Yılmaz 0000-0002-8776-2117

Gülen Türker 0000-0002-7554-1544

Project Number Fhd-2021-3677
Early Pub Date December 30, 2023
Publication Date December 31, 2023
Submission Date December 30, 2022
Acceptance Date March 20, 2023
Published in Issue Year 2023 Volume: 8 Issue: 4

Cite

APA Ak, İ., Yılmaz, M., & Türker, G. (2023). Kırmızı Alglerden Gracilaria verrucosa’nın Biyomas Verimi ve Kimyasal Kompozisyonu Üzerine Fotoperiyot Uygulamalarının Etkisinin Belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 8(4), 756-763. https://doi.org/10.35229/jaes.1226819


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg