Research Article
BibTex RIS Cite

Microbial Decolorization of Reactive Violet 1: Biosorption Optimization by Central Composite Design

Year 2023, Volume: 8 Issue: 4, 603 - 611, 31.12.2023
https://doi.org/10.35229/jaes.1332807

Abstract

Biological treatment of wastewater containing dyes utilizing aerobic, anaerobic, or combined aerobic-anaerobic biodegradation techniques is often utilized due to its relative affordability and lack of hazardous consequences. Different microbes including bacteria, fungi, and algae were used to decolorize the different dyes. Up to 10% of dyes used in the textile industry are eliminated as colored wastewater after being applied and are not bonded to the fibers. These colored wastewaters must be properly cleaned before being dumped into different bodies of water. The objective of variety search is to identify the factor combination with the highest desirability combination. Desirability functions are frequently employed in RSM optimization.
Four bacterial biomasses have been tested for their capacity to decolorize dyes in this study. Screening studies included four distinct biomasses and four distinct reactive dyes. The bacterial strain #288 has a biosorption with 70% on Reactive Violet 1. Central composite design was employed to maximize the biosorption percentage and biosorption capacity. At the result of the study, Reactive Violet 1 was adsorbed by #288 with 93,7% and the biosorption capacity was estimated to be 325,7. FTIR and SEM were used to characterize the biomass before and after decolorization. The outcome demonstrates that #288 is effective in removing Reactive Violet 1 from textile wastewaters.

Thanks

I would like to thank Prof. Dr. Okan Zafer YEŞİLEL (FT-IR Spectroscopy Research Laboratory at Eskisehir Osmangazi University) for the FTIR analyzes.

References

  • Akar, S.T., Akar, T. & Çabuk, A. (2009). Decolorization of a textile dye, Reactive Red 198 (RR198), by Aspergillus parasiticus fungal biosorbent. Brazilian Journal of Chemical Engineering, 26(2), 399-405. https://doi.org/10.1590/S0104- 66322009000200018.
  • Akar, T., Turkyilmaz, S., Celik, S. & Akar, S.T. (2016). Treatment design and characteristics of a biosorptive decolourization process by a green type sorbent. Journal of Cleaner Production, 112, 4844-4853.
  • Al-Zawahreh, K., Barral, M.T., Al-Degs, Y. & Paradelo, R. (2021). Comparison of the sorption capacity of basic, acid, direct and reactive dyes by compost in batch conditions. Journal of Environmental Management, 294. DOI: 10.1016/j.jenvman.2021.113005
  • Aytar Celik, P., Abutaha, A.M.K., Nural Yaman, B., Cakmak, H., Hosgün, S. & Cabuk, A. (2021). Efficient removal of Reactive Orange 13 with magnetic Mucor circinelloides from mill scale. Desalination And Water Treatment, 226, 347- 361. DOI: 10.5004/dwt.2021.27236
  • Aytar, P., Bozkurt, D., Erol, S., Özdemir, M. & Çabuk, A. (2016). Increased removal of Reactive Blue 72 and 13 acidic textile dyes by Penicillium ochrochloron fungus isolated from acidic mine drainage. Desalination and Water Treatment, 57(41), 19333-19343. DOI: 10.1080/19443994.2015.1098567
  • Bello, O.S., Siang, T.T. & Ahmad, M.A. (2012). Adsorption of Remazol Brilliant Violet-5R reactive dye from aqueous solution by cocoa pod husk-based activated carbon: kinetic, equilibrium and thermodynamic studies. Asia-Pacific Journal of Chemical Engineering, 7(3), 378-388. DOI: 10.1002/apj.557
  • Benkhaya, S., M’ rabet, S. & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. DOI: 10.1016/j.inoche.2020.107891
  • Cengiz, G., Aytar, P., Şam, M. & Çabuk, A. (2014). Removal of Reactive Dyes using Magnetically Separable Trametes versicolor Cells as a New Composite Biosorbent. Separation Science and Technology, 49(12), 1860-1871. DOI: 10.1080/01496395.2014.903496
  • Chen, K.C., Wu, J.Y., Liou, D.J. & Hwang, S.C.J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, 101(1). DOI: 10.1016/S0168- 1656(02)00303-6
  • Dolphen, R., Sakkayawong, N., Thiravetyan, P., & Nakbanpote, W. (2007). Adsorption of Reactive Red 141 from wastewater onto modified chitin. Journal of Hazardous Materials, 145(1–2), 250- 255. DOI: 10.1016/j.jhazmat.2006.11.026
  • Gahlout, M., Gupte, S. & Gupte, A. (2013). Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1. 3 Biotech, 3(2), 143-152. DOI: 10.1007/s13205-012-0079-z
  • Ghodake, G., Jadhav, S., Dawkar, V. & Govindwar, S. (2009). Biodegradation of diazo dye Direct brown MR by Acinetobacter calcoaceticus NCIM 2890. International Biodeterioration and Biodegradation, 63(4). DOI: 10.1016/j.ibiod.2008.12.002
  • Hu X, Cao J, Yang H, Li D, Qiao Y, Zhao J, et al. (2020). Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbondegrading strain Rhodococcus sp. HX-2. PLoS ONE 15(1): e0226557. DOI: 10.1371/journal.pone.0226557
  • Jain, K., Shah, V., Chapla, D. & Madamwar, D. (2012). Decolorization and degradation of azo dye – Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. Journal of Hazardous Materials, 213-214, 378-386. DOI: 10.1016/j.jhazmat.2012.02.010
  • Khan, R., Bhawana, P. & Fulekar, M.H. (2013). Microbial decolorization and degradation of synthetic dyes: A review. In Reviews in Environmental Science and Biotechnology (Vol. 12, Issue 1). DOI: 10.1007/s11157-012-9287-6.
  • Mohammad Hanapi NH., Sayid Abdullah SHY., Ismail A. & Juahir H. (2021). Central Composite Design: a Response Surface Methodology Approach in Biodegradation of Textile Dye Wastewater. Journal of Korean Society of Environmental Engineers, 43(6), 461-475.
  • Moosvi, S., Keharia, H. & Madamwar, D. (2005). Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World Journal of Microbiology and Biotechnology, 21(5), 667-672. DOI: 10.1007/s11274-004-3612-3
  • Moosvi, S., Kher, X. & Madamwar, D. (2007). Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes and Pigments, 74(3), 723-729. DOI: 10.1016/j.dyepig.2006.05.005
  • Öge, E., Nural Yaman, B. & Buruk Şahin, Y. (2023). Optimization of biodegradation yield of reactive blue 49: An integrated approach using response surface methodology based marine predators algorithm. Journal of Microbiological Methods, 206, 106691. DOI: 10.1016/j.mimet.2023.106691
  • Patel, M. J., Tandel, R. C., Sonera, S. A., & Bairwa, S. K. (2023). Trends in the synthesis and application of some reactive dyes: A review. Brazilian Journal of Science, 2(7), 14-29. DOI: 10.14295/bjs.v2i7.350
  • Pathak, V.V., Kothari, R., Chopra, A.K. & Singh, D.P. (2015). Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. Journal of Environmental Management, 163. DOI: 10.1016/j.jenvman.2015.08.041
  • Prabhakar, Y., Gupta, A. & Kaushik, A. (2019). Effect of some Organic co-pollutants on Decolorization of Reactive Violet 1 dye by an Indigenous Microbial Strain from Textile Wastewater. Society for Environment and Development, 159- 168.
  • Prabhakar, Y., Gupta, A. & Kaushik, A. (2019). Enhanced decolorization of reactive violet dye 1 by halo-alkaliphilic Nesterenkonia strain: Process optimization, short acclimatization and reusability analysis in batch cycles. Process Safety and Environmental Protection, 131, 116-126. DOI: 10.1016/j.psep.2019.09.004
  • Razmovski, R. & Šćiban, M. (2008). Biosorption of Cr (VI) and Cu (II) by waste tea fungal biomass. Ecological Engineering, 34(2), 179-186.
  • Ribas, M.C., Adebayo, M.A., Prola, L.D.T., Lima, E.C., Cataluña, R., Feris, L.A., Puchana-Rosero, M. J., Machado, F.M., Pavan, F.A. & Calvete, T. (2014). Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chemical Engineering Journal, 248, 315-326. DOI: 10.1016/j.cej.2014.03.054
  • Roy, U., Manna, S., Sengupta, S., Das, P., Datta, S., Mukhopadhyay, A. & Bhowal, A. (2018). Dye Removal Using Microbial Biosorbents. In Green Adsorbents for Pollutant Removal. Environmental Chemistry for a Sustainable World; Crini, G., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2018; Volume 19. DOI: 10.1007/978-3-319-92162-4_8
  • Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S.P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138-157. DOI: 10.1016/j.jtice.2010.06.006
  • Waheed, A., Baig, N., Ullah, N. & Falath, W. (2021). Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. Journal of Environmental Management, 287, 112360.
  • Wang, B., Zhou, K., Liu, H. et al. (2016). Biosorption Behavior and Reuse Potential of Waste Biomass of Aspergillus fumigatus, previously Used in Humic Acid Biosorption, in Removal of Reactive Blue 49. Environmental Process. 3, 843-856. DOI: 10.1007/s40710-016-0188-5
  • Zuorro, A., Maffei, G. & Lavecchia, R. (2017). Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica. Journal of Environmental Chemical Engineering, 5(4), 4121-4127. DOI: 10.1016/j.jece.2017.07.078.

REAKTİF MOR 1’İN MİKROBİYAL DEKOLORİZASYONU: MERKEZİ KOMPOZİT TASARIM İLE BİYOSORPSİYON OPTİMİZASYONU

Year 2023, Volume: 8 Issue: 4, 603 - 611, 31.12.2023
https://doi.org/10.35229/jaes.1332807

Abstract

Boya içeren atık suyun biyolojik olarak arıtılmasında, göreceli olarak karşılanabilirliği ve tehlikeli sonuçlarının olmaması nedeniyle sıklıkla kullanılan teknikler qerobik, anaerobik veya kombine aerobik-anaerobik biyolojik bozunma teknikleridir. Farklı boyaların rengini gidermek için bakteri, mantar ve algler dahil olmak üzere farklı mikroorganizmalar kullanılmaktadır. Tekstil endüstrisinde kullanılan boyaların %10'u kadarı uygulandıktan sonra renkli atık su olarak giderilir ve fiberlere bağlanamaz. Bu renkli atık sular, farklı su kütlelerine boşaltılmadan önce uygun şekilde iyileştirilmelidir. Bu alanda yapılan çalışmaların amacı, en yüksek arzu edilirlik kombinasyonuna sahip faktör kombinasyonunu belirlemektir. İstenirlik fonksiyonları, RSM optimizasyonunda sıklıkla kullanılmaktadır.
Bu çalışmada, dört bakteri biyokütlesinin renk giderimindeki kapasiteleri test edilmiştir. Tarama çalışmaları, dört farklı biyokütle ve dört farklı reaktif boya içermektedir. Bakteri suşu #288’in, Reaktif Mor 1'de yaklaşık %70'lik bir biyosorpsiyon verimine sahip olduğu bulunmuştur. Biyosorpsiyon yüzdesini ve biyosorpsiyon kapasitesini maksimize etmek için merkezi bileşik tasarım kullanılmıştır. Çalışmalar sonucunda Reactive Violet 1 %93 ile #288 tarafından adsorbe edilmiş ve biyosorpsiyon kapasitesi 325,7 olarak hesaplanmıştır. Renk gidermeden önce ve sonra biyokütleyi karakterize etmek için FTIR ve SEM kullanılmıştır. Sonuç olarak, #288'in tekstil atık sularından Reaktif Mor 1'i gidermede etkili bir biyokütle olduğu gösterilmiştir.

References

  • Akar, S.T., Akar, T. & Çabuk, A. (2009). Decolorization of a textile dye, Reactive Red 198 (RR198), by Aspergillus parasiticus fungal biosorbent. Brazilian Journal of Chemical Engineering, 26(2), 399-405. https://doi.org/10.1590/S0104- 66322009000200018.
  • Akar, T., Turkyilmaz, S., Celik, S. & Akar, S.T. (2016). Treatment design and characteristics of a biosorptive decolourization process by a green type sorbent. Journal of Cleaner Production, 112, 4844-4853.
  • Al-Zawahreh, K., Barral, M.T., Al-Degs, Y. & Paradelo, R. (2021). Comparison of the sorption capacity of basic, acid, direct and reactive dyes by compost in batch conditions. Journal of Environmental Management, 294. DOI: 10.1016/j.jenvman.2021.113005
  • Aytar Celik, P., Abutaha, A.M.K., Nural Yaman, B., Cakmak, H., Hosgün, S. & Cabuk, A. (2021). Efficient removal of Reactive Orange 13 with magnetic Mucor circinelloides from mill scale. Desalination And Water Treatment, 226, 347- 361. DOI: 10.5004/dwt.2021.27236
  • Aytar, P., Bozkurt, D., Erol, S., Özdemir, M. & Çabuk, A. (2016). Increased removal of Reactive Blue 72 and 13 acidic textile dyes by Penicillium ochrochloron fungus isolated from acidic mine drainage. Desalination and Water Treatment, 57(41), 19333-19343. DOI: 10.1080/19443994.2015.1098567
  • Bello, O.S., Siang, T.T. & Ahmad, M.A. (2012). Adsorption of Remazol Brilliant Violet-5R reactive dye from aqueous solution by cocoa pod husk-based activated carbon: kinetic, equilibrium and thermodynamic studies. Asia-Pacific Journal of Chemical Engineering, 7(3), 378-388. DOI: 10.1002/apj.557
  • Benkhaya, S., M’ rabet, S. & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. DOI: 10.1016/j.inoche.2020.107891
  • Cengiz, G., Aytar, P., Şam, M. & Çabuk, A. (2014). Removal of Reactive Dyes using Magnetically Separable Trametes versicolor Cells as a New Composite Biosorbent. Separation Science and Technology, 49(12), 1860-1871. DOI: 10.1080/01496395.2014.903496
  • Chen, K.C., Wu, J.Y., Liou, D.J. & Hwang, S.C.J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, 101(1). DOI: 10.1016/S0168- 1656(02)00303-6
  • Dolphen, R., Sakkayawong, N., Thiravetyan, P., & Nakbanpote, W. (2007). Adsorption of Reactive Red 141 from wastewater onto modified chitin. Journal of Hazardous Materials, 145(1–2), 250- 255. DOI: 10.1016/j.jhazmat.2006.11.026
  • Gahlout, M., Gupte, S. & Gupte, A. (2013). Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1. 3 Biotech, 3(2), 143-152. DOI: 10.1007/s13205-012-0079-z
  • Ghodake, G., Jadhav, S., Dawkar, V. & Govindwar, S. (2009). Biodegradation of diazo dye Direct brown MR by Acinetobacter calcoaceticus NCIM 2890. International Biodeterioration and Biodegradation, 63(4). DOI: 10.1016/j.ibiod.2008.12.002
  • Hu X, Cao J, Yang H, Li D, Qiao Y, Zhao J, et al. (2020). Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbondegrading strain Rhodococcus sp. HX-2. PLoS ONE 15(1): e0226557. DOI: 10.1371/journal.pone.0226557
  • Jain, K., Shah, V., Chapla, D. & Madamwar, D. (2012). Decolorization and degradation of azo dye – Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. Journal of Hazardous Materials, 213-214, 378-386. DOI: 10.1016/j.jhazmat.2012.02.010
  • Khan, R., Bhawana, P. & Fulekar, M.H. (2013). Microbial decolorization and degradation of synthetic dyes: A review. In Reviews in Environmental Science and Biotechnology (Vol. 12, Issue 1). DOI: 10.1007/s11157-012-9287-6.
  • Mohammad Hanapi NH., Sayid Abdullah SHY., Ismail A. & Juahir H. (2021). Central Composite Design: a Response Surface Methodology Approach in Biodegradation of Textile Dye Wastewater. Journal of Korean Society of Environmental Engineers, 43(6), 461-475.
  • Moosvi, S., Keharia, H. & Madamwar, D. (2005). Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World Journal of Microbiology and Biotechnology, 21(5), 667-672. DOI: 10.1007/s11274-004-3612-3
  • Moosvi, S., Kher, X. & Madamwar, D. (2007). Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes and Pigments, 74(3), 723-729. DOI: 10.1016/j.dyepig.2006.05.005
  • Öge, E., Nural Yaman, B. & Buruk Şahin, Y. (2023). Optimization of biodegradation yield of reactive blue 49: An integrated approach using response surface methodology based marine predators algorithm. Journal of Microbiological Methods, 206, 106691. DOI: 10.1016/j.mimet.2023.106691
  • Patel, M. J., Tandel, R. C., Sonera, S. A., & Bairwa, S. K. (2023). Trends in the synthesis and application of some reactive dyes: A review. Brazilian Journal of Science, 2(7), 14-29. DOI: 10.14295/bjs.v2i7.350
  • Pathak, V.V., Kothari, R., Chopra, A.K. & Singh, D.P. (2015). Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. Journal of Environmental Management, 163. DOI: 10.1016/j.jenvman.2015.08.041
  • Prabhakar, Y., Gupta, A. & Kaushik, A. (2019). Effect of some Organic co-pollutants on Decolorization of Reactive Violet 1 dye by an Indigenous Microbial Strain from Textile Wastewater. Society for Environment and Development, 159- 168.
  • Prabhakar, Y., Gupta, A. & Kaushik, A. (2019). Enhanced decolorization of reactive violet dye 1 by halo-alkaliphilic Nesterenkonia strain: Process optimization, short acclimatization and reusability analysis in batch cycles. Process Safety and Environmental Protection, 131, 116-126. DOI: 10.1016/j.psep.2019.09.004
  • Razmovski, R. & Šćiban, M. (2008). Biosorption of Cr (VI) and Cu (II) by waste tea fungal biomass. Ecological Engineering, 34(2), 179-186.
  • Ribas, M.C., Adebayo, M.A., Prola, L.D.T., Lima, E.C., Cataluña, R., Feris, L.A., Puchana-Rosero, M. J., Machado, F.M., Pavan, F.A. & Calvete, T. (2014). Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chemical Engineering Journal, 248, 315-326. DOI: 10.1016/j.cej.2014.03.054
  • Roy, U., Manna, S., Sengupta, S., Das, P., Datta, S., Mukhopadhyay, A. & Bhowal, A. (2018). Dye Removal Using Microbial Biosorbents. In Green Adsorbents for Pollutant Removal. Environmental Chemistry for a Sustainable World; Crini, G., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2018; Volume 19. DOI: 10.1007/978-3-319-92162-4_8
  • Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S.P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138-157. DOI: 10.1016/j.jtice.2010.06.006
  • Waheed, A., Baig, N., Ullah, N. & Falath, W. (2021). Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. Journal of Environmental Management, 287, 112360.
  • Wang, B., Zhou, K., Liu, H. et al. (2016). Biosorption Behavior and Reuse Potential of Waste Biomass of Aspergillus fumigatus, previously Used in Humic Acid Biosorption, in Removal of Reactive Blue 49. Environmental Process. 3, 843-856. DOI: 10.1007/s40710-016-0188-5
  • Zuorro, A., Maffei, G. & Lavecchia, R. (2017). Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica. Journal of Environmental Chemical Engineering, 5(4), 4121-4127. DOI: 10.1016/j.jece.2017.07.078.
There are 30 citations in total.

Details

Primary Language English
Subjects Pollution and Contamination (Other)
Journal Section Articles
Authors

Belma Nural Yaman 0000-0003-2576-1300

Early Pub Date December 15, 2023
Publication Date December 31, 2023
Submission Date July 26, 2023
Acceptance Date October 18, 2023
Published in Issue Year 2023 Volume: 8 Issue: 4

Cite

APA Nural Yaman, B. (2023). Microbial Decolorization of Reactive Violet 1: Biosorption Optimization by Central Composite Design. Journal of Anatolian Environmental and Animal Sciences, 8(4), 603-611. https://doi.org/10.35229/jaes.1332807


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg