Research Article
BibTex RIS Cite

Comparative Assessment of Nutritional Composition, Polyphenol Content and Antioxidative Properties of Edible and Medicinal Mushroom: Coriolus versicolor

Year 2023, Volume: 8 Issue: 4, 626 - 634, 31.12.2023
https://doi.org/10.35229/jaes.1339958

Abstract

In recent years, edible and medicinal mushrooms have a very important position in functional food and bioactive components. Mushrooms attract the attention of the medical industry with their nutritional properties as well as their benefits for consumer health. The objectives of this research was to to reveal the nutritional composition, antioxidant potential, phenolic and flavonoid content of the commercially edible and medicinal mushroom Coriolus versicolor and to evaluate its anti-cancer effect against HT-29 cells. In this context, the nutrient composition was analyzed in accordance with the Association of Official Analytical Chemists (AOAC) procedure. C. versicolor showed a high nutritional value with protein, carbohydrate, dietary fiber and glucan content. The total phenolic (TPC) and total flavonoid contents (TFC) of the water, ethanol and methanol extracts of the specified mushroom were determined, and it was found that the ethanol extract had the highest TPC (172.80±2.35 mg GAE/g dw) and TFC (48.72±2.89 mg QE/g dw) values among the three extract types. In addition, the antioxidant capacity of extracts was compared with different methods (DPPH, ABTS, FRAP, and CUPRAC). The ethanol extract showed the highest DPPH (39.16±0.82 µM TE/g dw), ABTS (29.19±1.30 µM TE/g dw) and CUPRAC (37.17±0.79 µM TE/g dw) activities among the other extracts, while FRAP (21.01±1.62 µM TE/g dw) activity for water extract was determined to be the highest. Finally, when the anti-cancer effects of these extracts were evaluated against HT-29 cells, it was observed that ethanol, methanol and water extract inhibited 82.43%, 79.15% and 65.56%, respectively, at the end of 48 hours.

References

  • Abd Razak, D.L., Fadzil, N.H.M., Jamaluddin, A., Abd Rashid, N.Y., Sani, N.A. & Manan. M.A. (2019). Effects of different extracting conditions on anti-tyrosinase and antioxidant activities of Schizophyllum commune fruit bodies. Biocatalysis and Agricultural Biotechnology, 19, 101116.
  • Abdelshafy, A.M., Luo, Z., Belwal, T., Ban, Z. & Li, L. (2022). A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Food Reviews International, 62(22), 1-34.
  • Aljadi, A. & Kamaruddin. M. (2004). Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry, 85(4), 513-518.
  • Angelova, G., Brazkova, M., Mihaylova, D., Slavov, A., Petkova, N., Blazheva, D., Deseva, I., Gotova, I., Dimitrov, Z. & Krastanov, A. (2022). Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. Journal of Fungi. 8(7), 738.
  • Apak, R., Güçlü, K., Özyürek, M. & Karademir, S.E. (2004). A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • Arora, S., Goyal, S., Balani, J. & Tandon. S. (2013). Enhanced antiproliferative effects of aqueous extracts of some medicinal mushrooms on colon cancer cells. International Journal of Medicinal Mushrooms, 15(3), 301-314.
  • Assemie, A. & Abaya, G. (2022). The Effect of Edible Mushroom on Health and Their Biochemistry, International Journal of Microbiology, (7), Article ID 8744788.
  • Association of Official Analytical Chemists. (2012). Official Methods of Analysis, 19th edition, Washington, DC.
  • Association of Official Analytical Chemists. (2017). Official Methods of Analysis, 18th edition, Arlington, VA, USA.
  • Barros, L., Baptista, P., Estevinho, L.M. & Ferreira, I.C.F.R. (2007). Effect of Fruiting Body Maturity Stage on Chemical Composition and Antimicrobial Activity of Lactarius sp. Mushrooms. Journal of Agricultural and Food Chemistry, 55, 8766-8771.
  • Benzie, I.F.F. & Strain, J.J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76.
  • Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
  • Chang, C., Yang, M., Wen, H. & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178- 182.
  • Chen, Y., Lv, J., Li, K., Xu, J., Li, M., Zhang, W. & Pang, X. (2016). Sporoderm-broken spores of Ganoderma lucidum inhibit the growth of lung cancer: Involvement of the Akt/mTOR signaling pathway. Nutrition and Cancer, 68(7), 1151- 1160.
  • Contato, A.G., Inacio, F.D., de Araujo, C.A.V., Brugnari, T., Maciel, G.M., Haminiuk, C.W.I., Bracht, A., Peralta, R.M. & de Souza, C.G.M. (2020). Comparison between the aqueous extracts of mycelium and basidioma of the edible mushroom Pleurotus pulmonarius: Chemical composition and antioxidant analysis. Journal of Food Measurement and Characterization, 14(2), 830-837.
  • Cruz, A., Pimental, L., Rodriguez-Alcala, L.M., Fernandes, T. & Manuela, P. (2016). Health Benefits of Edible Mushrooms Focused on Coriolus versicolor: A Review. Journal of Food and Nutrition Research, 4(12), 773-781.
  • Cui, J. & Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances, 21(2), 109-122.
  • Elkhateeb, W.A., Daba, G.M.,Thomas, P.W. & Wen, T.-C.(2019). Medicinal Mushrooms as a Source of Natural Therapeutic Bioactive Compounds. Egyptian Pharmaceutical Journal, 18, 145-155.
  • DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Cehmistry, 28, 350-356.
  • Gamez-Meza, N., Noriega-Oriega-Rodriguez, J.A., Medina-Juarez, L.A., Ortega-Garcia, J., Cazarez-Casanova, R. & Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from thompson grape bagasse. Journal of the American Oil Chemists' Society, 76,14-45.
  • Harhaji, L.J., Mijatovic, S., Maksimovic-Ivanic, D., Stojanovic, I., Momcilovic, M., Maksimovic, V., Tufegdzic, S., Marjanovic, Z., MorticaStojkovic, M., Vucinic, Z. & Stonic-Grujicic, S. (2008). Antitumor effect of Coriolus versicolor methanol extract against mouse B16 melanoma cells: In vitro and in vivo study. Food and Chemical Toxicology, 46,1825-1833.
  • Khan, A.A., Gani, A., Ahmad, M., Masoodi, F.A., Amin, F. & Kousar. S. (2016). Mushroom varieties found in the Himalayan regions of India: Antioxidant, antimicrobial, and antiproliferative activities. Food Science and Biotechnology, 25(4), 1095-1100.
  • Khodavirdipour, A., Zarean, R. & Safaralizadeh, R. (2021). Evaluation of the Anti-cancer Effect of Syzygium cumini Ethanolic Extract on HT-29 Colorectal Cell Line. Journal of Gastrointestinal Cancer, 52, 575-581.
  • Knezevic, A., Stajic, M., Sofrenic, I., Stanojkovic, T., Milovanovic, I., Tesevic, V. & Vukojevic, J. (2018). Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS ONE, 13(8), e0203064.
  • Kozarski, M., Klaus, A., Vunduk, J., & Niksic, M. (2020). The influence of mushroom Coriolus versicolor and hazelnuts enrichment on antioxidant activities and bioactive content of dark chocolate, Food and Feed Research, 47(1), 23-32.
  • Lopez-Hortas, L., Florez-Fernandez, N., Torres, M.D. & Dominguez, H. (2022). Update on potential of edible mushrooms: high-value compounds, extraction strategies and bioactive properties. International Journal of Food Science and Technology , 57, 1378-1385 .
  • Maeng, J.H., Shahbaz, H.M., Ameer, K., Jo, Y. & Kwon, J.H. (2017). Optimization of MicrowaveAssisted Extraction of Bioactive Compounds from Coriolus versicolor Mushroom Using Response Surface Methodology. Journal of Food Process Engineering, 40, e12421.
  • Matijasevic, D., Pantic, M., Raskovic, B., Pavlovic, V., Duvnjak, D., Sknepnek, A. & Niksic, M. (2016). The Antibacterial Activity of Coriolus versicolor Methanol Extract and Its Effect on Ultrastructural Changes of Staphylococcus aureus and Salmonella Enteritidis. Frontiers Microbiology, 4(7), 1226.
  • Miletic, D., Turlo, J., Podsadni, P., Sknepnek, A., Szczepanska, A., Klimaszewska, M., Malinowska, E., Levic, S., Nedovic, V. & Niksic, M. (2021). Production of bioactive selenium enriched crude exopolysaccharides via selenourea and sodium selenite bioconversion using Trametes versicolor. Food Bioscience, 42, 101046.
  • Mwangi, R.W., Macharia, J.M., Wagara, I.N. & Bence, R.L. (2022). The antioxidant potential of different edible and medicinal mushrooms. Biomedicine & Pharmacotheraphy, 147, 112621.
  • Raseta, M., Popovic, M., Knezevic, P., Sibul, F., Kaisarevic, S. & Karaman, M. (2020). Bioactive Phenolic Compounds of Two Medicinal Mushroom Speciesm Trametes versicolor and Stereum subtomentosum as Antioxidant and Antiproliferative Agents. Chemistry and Biodiversity, 17, e2000683.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yan, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237.
  • Ren, G., Liu, X.Y., Zhu, H.K., Yang, S.Z. & Fu, C.X. (2006). Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia, 77, 408-410.
  • Roca-Lema, D., Martinez-Iglesias, O., Fernández de Ana Portela, C., Rodriguez-Blanco, A., Valladares-Ayerbes, M., Diaz-Diaz, A., CasasPais, A., Prego, C. & Figueroa, A. (2019). In Vitro Anti-proliferative and Anti-invasive Effect of Polysaccharide-rich Extracts from Trametes versicolor and Grifola Frondosa in Colon Cancer Cells. International Journal of Medical Science, 16(2), 231-240.
  • Safin, R.R., Gainullin, R.H., Safina, A.V. & Gainullin, R.H. (2022). Methods for evaluating chaga extraction effectiveness based on its porosity change. Journal of Physics: Conference, 2373.
  • Sari, M., Prange, A., Lelley, J.I. & Hambitzer, R. (2017). Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chemistry, 216, 45-51.
  • Seklic, D.S., Jovanovic, M.M., Virijevic,, K., Grujic,, J., Zivanovic, M. & Markovic, S.D. (2021). Effects of Edible Mushrooms Phellinus linteus and Lentinus edodes Methanol Extracts on Colorectal Cancer Cell Lines. Biology and Life Sciences Forum, 6, 85.
  • Sganzerla, W.G., Todorov, S.D. & Silva, A.P.G. (2022). Research Trends in the Study of Edible Mushrooms: Nutritional Properties and Health Benefits. International Journal of Medicinal Mushrooms, 24(5), 1 -18.
  • Shnyreva, A., Shnyreva, A.A., Espinoza, C., Padron, J.M. & Trigos, A. (2018). Antiproliferative activity and cytotoxicity of some medicinal wooddestroying mushrooms from Russia. International Journal of Medicinal Mushrooms, 20, 1-11.
  • Silva, A., Silva, V., Igrejas, G., Aires, A., Falco, V., Valentao, P. & Poeta, P. (2023). Phenolic compounds classification and their distribution in winemaking by-products. European Food Research and Technology, 249, 207-239.
  • Smolskaite, L., Venskutonis, P.R. & Talou. T. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Science and Technology, 60(1), 462-471.
  • Stojanova, M., Pantic, M., Karadelev, M., Culeva, B. & Niksic, M. (2021). Antioxidant potential of extracts of three mushroom species collected from the Republic of North Macedonia, Journal of Food Process Preservation, 45, e15155.
  • Wu, J., Yang, Z., Yang, X., Chen, X., Zhang, H. & Zhan, X. (2021). Synthesis of branched β-1,3- glucan oligosaccharide with narrow degree of polymerization by fungi co-cultivation. Carbohydrate Polymers, 273, 118582.
  • Zielinski, A.A.F., Haminiuk, C.W.I. & Beta. T. (2016). Multiresponse optimization of phenolic antioxidants from white tea (Camellia sinensis L. Kuntze) and their identification by LC–DAD–QTOF–MS/MS. LWT-Food Science and Technology, 65, 897-907.

Yenilebilir ve Tıbbi Mantar Coriolus versicolor’un Besin Bileşimi, Polifenol İçeriği ve Antioksidatif Özelliklerinin Karşılaştırmalı Değerlendirmesi

Year 2023, Volume: 8 Issue: 4, 626 - 634, 31.12.2023
https://doi.org/10.35229/jaes.1339958

Abstract

Son yıllarda, yenilebilir ve tıbbi mantarlar, fonksiyonel gıda ve biyoaktif bileşen kaynakları olarak daha fazla dikkat çekmektedir. Besleyici özelliklerinin yanı sıra mantarlar, tüketici sağlığına olan faydaları ile de medikal endüstrinin ilgisini çekmektedir. Bu çalışma, ticari olarak satın alınan, yenilebilir ve tıbbi mantar Coriolus versicolor’un besin bileşimini, antioksidan potansiyelini, fenolik ve flavonoid içeriğini belirleyerek HT-29 hücrelerine karşı anti-kanser etkisini değerlendirmeyi amaçlamıştır. Bu kapsamda, ilk olarak, besin bileşimi Resmi Analitik Kimyacılar Birliği (AOAC) prosedürüne göre belirlenmiştir. C. versicolor mantarı, sahip olduğu protein, karbonhidrat, diyet lifi ve glukan içeriği ile yüksek bir besin değeri göstermektedir. Belirtilen mantarın su, etanol ve metanol ekstrelerinin toplam fenolik (TPC) ve toplam flavonoid içerikleri (TFC) belirlenmiş ve etanol ekstresinin üç ekstre türü içerisinde en yüksek TPC (172,80±2,35 mg GAE/g ekstre) ve TFC (48,72±2,89 mg QE/g ekstre) değerlerine sahip olduğu bulunmuştur. Ayrıca, bu ekstrelerin antioksidan kapasitesi farklı yöntemlerle (DPPH, ABTS, FRAP ve CUPRAC) karşılaştırılmıştır. Etanol ekstresi diğer ekstreler arasında en yüksek DPPH (39,16±0,82 µM TE/g ekstre), ABTS (29,19±1,30 µM TE/g ekstre) ve CUPRAC (37,17±0,79 µM TE/g ekstre) aktivitelerini gösterirken, su ekstresinin FRAP (21,01±1,62 µM TE/g ekstre) aktivitesi en yüksek olarak belirlenmiştir. Son olarak, bu ekstrelerin HT-29 hücreleri üzerindeki anti-kanser etkileri değerlendirildiğinde, 48 saat sonunda etanol, metanol ve su ekstrelerinin sırasıyla %82,43, %79,15 ve %65,56 oranında inhibe ettiği gözlenmiştir.

References

  • Abd Razak, D.L., Fadzil, N.H.M., Jamaluddin, A., Abd Rashid, N.Y., Sani, N.A. & Manan. M.A. (2019). Effects of different extracting conditions on anti-tyrosinase and antioxidant activities of Schizophyllum commune fruit bodies. Biocatalysis and Agricultural Biotechnology, 19, 101116.
  • Abdelshafy, A.M., Luo, Z., Belwal, T., Ban, Z. & Li, L. (2022). A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Food Reviews International, 62(22), 1-34.
  • Aljadi, A. & Kamaruddin. M. (2004). Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry, 85(4), 513-518.
  • Angelova, G., Brazkova, M., Mihaylova, D., Slavov, A., Petkova, N., Blazheva, D., Deseva, I., Gotova, I., Dimitrov, Z. & Krastanov, A. (2022). Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. Journal of Fungi. 8(7), 738.
  • Apak, R., Güçlü, K., Özyürek, M. & Karademir, S.E. (2004). A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • Arora, S., Goyal, S., Balani, J. & Tandon. S. (2013). Enhanced antiproliferative effects of aqueous extracts of some medicinal mushrooms on colon cancer cells. International Journal of Medicinal Mushrooms, 15(3), 301-314.
  • Assemie, A. & Abaya, G. (2022). The Effect of Edible Mushroom on Health and Their Biochemistry, International Journal of Microbiology, (7), Article ID 8744788.
  • Association of Official Analytical Chemists. (2012). Official Methods of Analysis, 19th edition, Washington, DC.
  • Association of Official Analytical Chemists. (2017). Official Methods of Analysis, 18th edition, Arlington, VA, USA.
  • Barros, L., Baptista, P., Estevinho, L.M. & Ferreira, I.C.F.R. (2007). Effect of Fruiting Body Maturity Stage on Chemical Composition and Antimicrobial Activity of Lactarius sp. Mushrooms. Journal of Agricultural and Food Chemistry, 55, 8766-8771.
  • Benzie, I.F.F. & Strain, J.J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76.
  • Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
  • Chang, C., Yang, M., Wen, H. & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178- 182.
  • Chen, Y., Lv, J., Li, K., Xu, J., Li, M., Zhang, W. & Pang, X. (2016). Sporoderm-broken spores of Ganoderma lucidum inhibit the growth of lung cancer: Involvement of the Akt/mTOR signaling pathway. Nutrition and Cancer, 68(7), 1151- 1160.
  • Contato, A.G., Inacio, F.D., de Araujo, C.A.V., Brugnari, T., Maciel, G.M., Haminiuk, C.W.I., Bracht, A., Peralta, R.M. & de Souza, C.G.M. (2020). Comparison between the aqueous extracts of mycelium and basidioma of the edible mushroom Pleurotus pulmonarius: Chemical composition and antioxidant analysis. Journal of Food Measurement and Characterization, 14(2), 830-837.
  • Cruz, A., Pimental, L., Rodriguez-Alcala, L.M., Fernandes, T. & Manuela, P. (2016). Health Benefits of Edible Mushrooms Focused on Coriolus versicolor: A Review. Journal of Food and Nutrition Research, 4(12), 773-781.
  • Cui, J. & Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances, 21(2), 109-122.
  • Elkhateeb, W.A., Daba, G.M.,Thomas, P.W. & Wen, T.-C.(2019). Medicinal Mushrooms as a Source of Natural Therapeutic Bioactive Compounds. Egyptian Pharmaceutical Journal, 18, 145-155.
  • DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Cehmistry, 28, 350-356.
  • Gamez-Meza, N., Noriega-Oriega-Rodriguez, J.A., Medina-Juarez, L.A., Ortega-Garcia, J., Cazarez-Casanova, R. & Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from thompson grape bagasse. Journal of the American Oil Chemists' Society, 76,14-45.
  • Harhaji, L.J., Mijatovic, S., Maksimovic-Ivanic, D., Stojanovic, I., Momcilovic, M., Maksimovic, V., Tufegdzic, S., Marjanovic, Z., MorticaStojkovic, M., Vucinic, Z. & Stonic-Grujicic, S. (2008). Antitumor effect of Coriolus versicolor methanol extract against mouse B16 melanoma cells: In vitro and in vivo study. Food and Chemical Toxicology, 46,1825-1833.
  • Khan, A.A., Gani, A., Ahmad, M., Masoodi, F.A., Amin, F. & Kousar. S. (2016). Mushroom varieties found in the Himalayan regions of India: Antioxidant, antimicrobial, and antiproliferative activities. Food Science and Biotechnology, 25(4), 1095-1100.
  • Khodavirdipour, A., Zarean, R. & Safaralizadeh, R. (2021). Evaluation of the Anti-cancer Effect of Syzygium cumini Ethanolic Extract on HT-29 Colorectal Cell Line. Journal of Gastrointestinal Cancer, 52, 575-581.
  • Knezevic, A., Stajic, M., Sofrenic, I., Stanojkovic, T., Milovanovic, I., Tesevic, V. & Vukojevic, J. (2018). Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS ONE, 13(8), e0203064.
  • Kozarski, M., Klaus, A., Vunduk, J., & Niksic, M. (2020). The influence of mushroom Coriolus versicolor and hazelnuts enrichment on antioxidant activities and bioactive content of dark chocolate, Food and Feed Research, 47(1), 23-32.
  • Lopez-Hortas, L., Florez-Fernandez, N., Torres, M.D. & Dominguez, H. (2022). Update on potential of edible mushrooms: high-value compounds, extraction strategies and bioactive properties. International Journal of Food Science and Technology , 57, 1378-1385 .
  • Maeng, J.H., Shahbaz, H.M., Ameer, K., Jo, Y. & Kwon, J.H. (2017). Optimization of MicrowaveAssisted Extraction of Bioactive Compounds from Coriolus versicolor Mushroom Using Response Surface Methodology. Journal of Food Process Engineering, 40, e12421.
  • Matijasevic, D., Pantic, M., Raskovic, B., Pavlovic, V., Duvnjak, D., Sknepnek, A. & Niksic, M. (2016). The Antibacterial Activity of Coriolus versicolor Methanol Extract and Its Effect on Ultrastructural Changes of Staphylococcus aureus and Salmonella Enteritidis. Frontiers Microbiology, 4(7), 1226.
  • Miletic, D., Turlo, J., Podsadni, P., Sknepnek, A., Szczepanska, A., Klimaszewska, M., Malinowska, E., Levic, S., Nedovic, V. & Niksic, M. (2021). Production of bioactive selenium enriched crude exopolysaccharides via selenourea and sodium selenite bioconversion using Trametes versicolor. Food Bioscience, 42, 101046.
  • Mwangi, R.W., Macharia, J.M., Wagara, I.N. & Bence, R.L. (2022). The antioxidant potential of different edible and medicinal mushrooms. Biomedicine & Pharmacotheraphy, 147, 112621.
  • Raseta, M., Popovic, M., Knezevic, P., Sibul, F., Kaisarevic, S. & Karaman, M. (2020). Bioactive Phenolic Compounds of Two Medicinal Mushroom Speciesm Trametes versicolor and Stereum subtomentosum as Antioxidant and Antiproliferative Agents. Chemistry and Biodiversity, 17, e2000683.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yan, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237.
  • Ren, G., Liu, X.Y., Zhu, H.K., Yang, S.Z. & Fu, C.X. (2006). Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia, 77, 408-410.
  • Roca-Lema, D., Martinez-Iglesias, O., Fernández de Ana Portela, C., Rodriguez-Blanco, A., Valladares-Ayerbes, M., Diaz-Diaz, A., CasasPais, A., Prego, C. & Figueroa, A. (2019). In Vitro Anti-proliferative and Anti-invasive Effect of Polysaccharide-rich Extracts from Trametes versicolor and Grifola Frondosa in Colon Cancer Cells. International Journal of Medical Science, 16(2), 231-240.
  • Safin, R.R., Gainullin, R.H., Safina, A.V. & Gainullin, R.H. (2022). Methods for evaluating chaga extraction effectiveness based on its porosity change. Journal of Physics: Conference, 2373.
  • Sari, M., Prange, A., Lelley, J.I. & Hambitzer, R. (2017). Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chemistry, 216, 45-51.
  • Seklic, D.S., Jovanovic, M.M., Virijevic,, K., Grujic,, J., Zivanovic, M. & Markovic, S.D. (2021). Effects of Edible Mushrooms Phellinus linteus and Lentinus edodes Methanol Extracts on Colorectal Cancer Cell Lines. Biology and Life Sciences Forum, 6, 85.
  • Sganzerla, W.G., Todorov, S.D. & Silva, A.P.G. (2022). Research Trends in the Study of Edible Mushrooms: Nutritional Properties and Health Benefits. International Journal of Medicinal Mushrooms, 24(5), 1 -18.
  • Shnyreva, A., Shnyreva, A.A., Espinoza, C., Padron, J.M. & Trigos, A. (2018). Antiproliferative activity and cytotoxicity of some medicinal wooddestroying mushrooms from Russia. International Journal of Medicinal Mushrooms, 20, 1-11.
  • Silva, A., Silva, V., Igrejas, G., Aires, A., Falco, V., Valentao, P. & Poeta, P. (2023). Phenolic compounds classification and their distribution in winemaking by-products. European Food Research and Technology, 249, 207-239.
  • Smolskaite, L., Venskutonis, P.R. & Talou. T. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Science and Technology, 60(1), 462-471.
  • Stojanova, M., Pantic, M., Karadelev, M., Culeva, B. & Niksic, M. (2021). Antioxidant potential of extracts of three mushroom species collected from the Republic of North Macedonia, Journal of Food Process Preservation, 45, e15155.
  • Wu, J., Yang, Z., Yang, X., Chen, X., Zhang, H. & Zhan, X. (2021). Synthesis of branched β-1,3- glucan oligosaccharide with narrow degree of polymerization by fungi co-cultivation. Carbohydrate Polymers, 273, 118582.
  • Zielinski, A.A.F., Haminiuk, C.W.I. & Beta. T. (2016). Multiresponse optimization of phenolic antioxidants from white tea (Camellia sinensis L. Kuntze) and their identification by LC–DAD–QTOF–MS/MS. LWT-Food Science and Technology, 65, 897-907.
There are 44 citations in total.

Details

Primary Language English
Subjects Veterinary Food Hygiene and Technology
Journal Section Articles
Authors

Özlem Erdal Altıntaş 0000-0003-4680-1738

Pınar Aytar Çelik 0000-0002-9447-1668

Early Pub Date December 15, 2023
Publication Date December 31, 2023
Submission Date August 9, 2023
Acceptance Date November 18, 2023
Published in Issue Year 2023 Volume: 8 Issue: 4

Cite

APA Erdal Altıntaş, Ö., & Aytar Çelik, P. (2023). Comparative Assessment of Nutritional Composition, Polyphenol Content and Antioxidative Properties of Edible and Medicinal Mushroom: Coriolus versicolor. Journal of Anatolian Environmental and Animal Sciences, 8(4), 626-634. https://doi.org/10.35229/jaes.1339958


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg