Technical Brief
BibTex RIS Cite

Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme

Year 2024, Volume: 36 Issue: 1, 103 - 115, 25.03.2024
https://doi.org/10.7240/jeps.1235645

Abstract

Grafen, 2004 yılında grafitten başarılı bir şekilde izole edilmesinden bu yana en ilginç karbon nanomalzemelerden birisi olarak kabul edilmektedir. Karbon-karbon sigma bağı ile birbirine bağlanmış iki eşdeğer alt kafes (sublattice) karbon atomundan oluşan petek çerçevesine sahip atom kalınlığında bir tabaka olan grafen ve grafenin türevleri, olağanüstü fizikokimyasal özellikleri nedeniyle son zamanlarda büyük ilgi görmüş, geleceğin sistemleri ve cihazları için yeni fırsatlar yaratmış ve bu da çok sayıda uygulamada kullanılmak üzere grafen talebinin artmasına neden olmuştur. Doğal kaynakların kullanımı yerine atıklardan grafen ve türevlerinin eldesi hem bu talebi karşılayabilmek hem de atıkların döngüsel ekonomi yaklaşımıyla yönetilmesi açısından önemli bir adımdır. Bu noktadan hareketle, bu derleme makalede grafen ve türevlerinin sentezlenme yöntemleri ve sentezlenmesinde kullanılan atıklar üzerinde durulmuştur.

Supporting Institution

Eskişehir Teknik Üniversitesi

Project Number

22ADP327

References

  • [1] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19).
  • [2] Raghavan, N., Thangavel, S., & Venugopal, G. (2017). A short review on preparation of graphene from waste and bioprecursors. Applied Materials Today, 7, 246-254.
  • [3] Khan, M., Tahir, M. N., Adil, S. F., Khan, H. U., Siddiqui, M. R. H., Al-warthan, A. A., & Tremel, W. (2015). Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 3(37), 18753-18808.
  • [4] Xu, Z. (2018). Fundamental Properties of Graphene. Graphene, 73–102.
  • [5] Mi, H. Y., Jing, X., Politowicz, A. L., Chen, E., Huang, H. X., & Turng, L. S. (2018). Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon, 132, 199-209.
  • [6] Wu, H., Xia, L., Ren, J., Zheng, Q., Xie, F., Jie, W., ... & Lin, D. (2018). A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries. Electrochimica Acta, 278, 83-92.
  • [7] Yanik, M. O., Yigit, E. A., Akansu, Y. E., & Sahmetlioglu, E. (2017). Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy, 138, 883-889.
  • [8] Xu, T., Li, Y., Chen, J., Wu, H., Zhou, X., & Zhang, Z. (2018). Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material. Applied Thermal Engineering, 140, 13-22.
  • [9] Abou Chacra, L., Sabri, M. A., Ibrahim, T. H., Khamis, M. I., Hamdan, N. M., Al-Asheh, S., ... & Fernandez, C. (2018). Application of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil from produced water. Journal of Environmental Chemical Engineering, 6(2), 3018-3033.
  • [10] Xu, Z., Wu, C., Li, F., Chen, W., Guo, T., & Kim, T. W. (2018). Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers. Nano Energy, 49, 274-282.
  • [11] Jara, A. D., Betemariam, A., Woldetinsae, G., & Kim, J. Y. (2019). Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology, 29(5), 671-689.
  • [12] Ikram, R., Jan, B. M., & Ahmad, W. (2020). Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. Journal of Materials Research and Technology, 9(6), 15924-15951.
  • [13] Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. (2019). Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 98, 163-180.
  • [14] Guo, S., & Dong, S. (2011). Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 40(5), 2644-2672.
  • [15] Kumar, N., Salehiyan, R., Chauke, V., Botlhoko, O. J., Setshedi, K., Scriba, M., ... & Ray, S. S. (2021). Top-down synthesis of graphene: A comprehensive review. FlatChem, 27, 100224.
  • [16] Chen, W., Yan, L., & Bangal, P. R. (2010). Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. The Journal of Physical Chemistry C, 114(47), 19885-19890.
  • [17] Whitener Jr, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and related materials, 46, 25-34.
  • [18] Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 3(22), 11700–11715.
  • [19] Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75-127.
  • [20] Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., ... & Lin, J. (2013). Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano energy, 2(3), 377-386.
  • [21] Lonkar, S. P., Deshmukh, Y. S., & Abdala, A. A. (2015). Recent advances in chemical modifications of graphene. Nano Research, 8(4), 1039-1074.
  • [22] Whitener Jr, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and related materials, 46, 25-34.
  • [23] Song, Z., Mu, X., Luo, T., & Xu, Z. (2015). Unzipping of carbon nanotubes is geometry-dependent. Nanotechnology, 27(1), 015601
  • [24] Wang, H., Wang, Y., Hu, Z., & Wang, X. (2012). Cutting and unzipping multiwalled carbon nanotubes into curved graphene nanosheets and their enhanced supercapacitor performance. ACS applied materials & interfaces, 4(12), 6827-6834.
  • [25] Wang, Z., Li, N., Shi, Z., & Gu, Z. (2010). Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology, 21(17), 175602.
  • [26] Subrahmanyam, K. S., Panchakarla, L. S., Govindaraj, A., & Rao, C. N. R. (2009). Simple method of preparing graphene flakes by an arc-discharge method. The Journal of Physical Chemistry C, 113(11), 4257-4259.
  • [27] Kong, X., Zhu, Y., Lei, H., Wang, C., Zhao, Y., Huo, E., ... & Ruan, R. (2020). Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chemical Engineering Journal, 399, 125808.
  • [28] Wang, F., Wang, F., Hong, R., Lv, X., Zheng, Y., & Chen, H. (2020). High-purity few-layer graphene from plasma pyrolysis of methane as conductive additive for LiFePO4 lithium ion battery. Journal of Materials Research and Technology, 9(5), 10004-10015.
  • [29] Thangaraj, B., Mumtaz, F., Abbas, Y., Anjum, D. H., Solomon, P. R., & Hassan, J. (2023). Synthesis of Graphene Oxide from Sugarcane Dry Leaves by Two-Stage Pyrolysis. Molecules, 28(8), 3329.
  • [30] Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., & Pei, S. S. (2008). Graphene segregated on Ni surfaces and transferred to insulators. Applied physics letters, 93(11), 113103.
  • [31] Zhao, P., Kumamoto, A., Kim, S., Chen, X., Hou, B., Chiashi, S., ... & Maruyama, S. (2013). Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol. The Journal of Physical Chemistry C, 117(20), 10755-10763.
  • [32] Zhao, Z., Shan, Z., Zhang, C., Li, Q., Tian, B., Huang, Z., ... & Cai, W. (2015). Study on the diffusion mechanism of graphene grown on copper pockets. Small, 11(12), 1418-1422.
  • [33] Hwang, J., Kim, M., Campbell, D., Alsalman, H. A., Kwak, J. Y., Shivaraman, S., ... & Spencer, M. G. (2013). van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. Acs Nano, 7(1), 385-395.
  • [34] Bhuyan, M., Alam, S., Uddin, M., Islam, M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. International Nano Letters, 6(2), 65-83.
  • [35] Riedl, C., Coletti, C., & Starke, U. (2010). Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. Journal of Physics D: Applied Physics, 43(37), 374009.
  • [36] Garg, K. K., Pandey, S., Kumar, A., Rana, A., Sahoo, N. G., & Singh, R. K. (2022). Graphene nanosheets derived from waste plastic for cost-effective thermoelectric applications. Results in Materials, 13, 100260.
  • [37] Karakoti, M., Pandey, S., Tatrari, G., Dhapola, P. S., Jangra, R., Dhali, S., ... & Sahoo, N. G. (2022). A waste to energy approach for the effective conversion of solid waste plastics into graphene nanosheets using different catalysts for high performance supercapacitors: a comparative study. Materials Advances, 3(4), 2146-2157.
  • [38] Tatrari, G., Tewari, C., Bohra, B. S., Pandey, S., Karakoti, M., Kumar, S., ... & Sahoo, N. G. (2021). Waste plastic derived graphene sheets as nanofillers to enhance mechanical strength of concrete mixture: An inventive approach to deal with universal plastic waste. Cleaner Engineering and Technology, 5, 100275.
  • [39] Liu, H., Chen, W., Zhang, R., Xu, C., Huang, X., Peng, H., ... & Miao, Z. (2021). Bioinspired in situ self-catalyzing strategy towards graphene nanosheets with hierarchical structure derived from biomass for advanced supercapacitors. Applied Surface Science, 566, 150692.
  • [40] Pandey, S., Karakoti, M., Dhali, S., Karki, N., SanthiBhushan, B., Tewari, C., ... & Sahoo, N. G. (2019). Bulk synthesis of graphene nanosheets from plastic waste: an invincible method of solid waste management for better tomorrow. Waste management, 88, 48-55.
  • [41] Pan, F., Jin, J., Fu, X., Liu, Q., & Zhang, J. (2013). Advanced oxygen reduction electrocatalyst based on nitrogen-doped graphene derived from edible sugar and urea. ACS applied materials & interfaces, 5(21), 11108-11114.
  • [42] Danafar, H., Mohammadi, A., Mousazadeh, N., Ghaffarlou, M., Mollasalehi, A., Sharafi, A., ... & Nosrati, H. (2021). An innovative green approach to the production of bio-sourced and nano-sized graphene oxide (GO)-like carbon flakes. Current Research in Green and Sustainable Chemistry, 4, 100200.
  • [43] Sharma, S., Kalita, G., Hirano, R., Shinde, S. M., Papon, R., Ohtani, H., & Tanemura, M. (2014). Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon, 72, 66-73.
  • [44] Wu, T., Ding, G., Shen, H., Wang, H., Sun, L., Jiang, D., ... ve Jiang, M. (2013). Triggering the continuous growth of graphene toward millimeter‐sized grains. Advanced Functional Materials, 23(2), 198-203.
  • [45] Li, Z., Wu, P., Wang, C., Fan, X., Zhang, W., Zhai, X., ... & Hou, J. (2011). Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS nano, 5(4), 3385-3390.
  • [46] Ruan, G., Sun, Z., Peng, Z., & Tour, J. M. (2011). Growth of graphene from food, insects, and waste. ACS nano, 5(9), 7601-7607.
  • [47] Sankar, S., Lee, H., Jung, H., Kim, A., Ahmed, A. T. A., Inamdar, A. I., ... & Kim, D. Y. (2017). Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New Journal of Chemistry, 41(22), 13792-13797.
  • [48] Singh, P., Bahadur, J., & Pal, K. (2017). One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Graphene, 6(3), 61-71.
  • [49] Adolfsson, K. H., Hassanzadeh, S., & Hakkarainen, M. (2015). Valorization of cellulose and waste paper to graphene oxide quantum dots. RSC Advances, 5(34), 26550-26558.
  • [50] Hashmi, A., Singh, A. K., Jain, B., & Singh, A. (2020). Muffle atmosphere promoted fabrication of graphene oxide nanoparticle by agricultural waste. Fullerenes, Nanotubes and Carbon Nanostructures, 28(8), 627-636.
  • [51] Panahi-Kalamuei, M., Amiri, O., & Salavati-Niasari, M. (2020). Green hydrothermal synthesis of high quality single and few layers graphene sheets by bread waste as precursor. Journal of Materials Research and Technology, 9(3), 2679-2690.
  • [52] Li, B., Wu, C., Xu, J., Hu, D., Zhang, T., Fang, X., & Tong, J. (2020). One-pot redox synthesis of graphene from waste graphite of spent lithium ion batteries with peracetic acid assistance. Materials Chemistry and Physics, 241, 122397.
  • [53] Obi, F. O., Ugwuishiwu, B. O., & Nwakaire, J. N. (2016). Agricultural waste concept, generation, utilization and management. Nigerian Journal of Technology, 35(4), 957-964
  • [54] Duque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902.
  • [55] FAO, Strategic Work of FAO For Sustainable Food and Agriculture, in: F.a.A.O.o.t.U.N. (FAO) (Ed.), Food and Agriculture Organization of the United Nations (FAO), 2022.
  • [56] European Commission. Changing the way we use plastic; (https://ec.europa.eu/environment/waste/pdf/pan-european-factsheet.pdf).

Synthesis of Graphen and Its Derivatives From Waste: A Review

Year 2024, Volume: 36 Issue: 1, 103 - 115, 25.03.2024
https://doi.org/10.7240/jeps.1235645

Abstract

Graphene has been recognized as one of the most interesting carbon nanomaterials since its successful isolation from graphite in 2004. Graphene, an atom-thick layer with a honeycomb frame consisting of two equivalent sublattice carbon atoms connected by a carbon-carbon sigma bond and its derivatives, have recently attracted great attention due to their outstanding physicochemical properties, creating new opportunities for future systems and devices, which has led to an increased demand for graphene for use in a multitude of applications. Obtaining graphene and its derivatives from wastes instead of using natural resources is an important step in terms of both meeting this demand and managing wastes with a circular economy approach. From this point of view, in this review article, the synthesis methods of graphene and its derivatives and the wastes used in their synthesis are emphasized.

Project Number

22ADP327

References

  • [1] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19).
  • [2] Raghavan, N., Thangavel, S., & Venugopal, G. (2017). A short review on preparation of graphene from waste and bioprecursors. Applied Materials Today, 7, 246-254.
  • [3] Khan, M., Tahir, M. N., Adil, S. F., Khan, H. U., Siddiqui, M. R. H., Al-warthan, A. A., & Tremel, W. (2015). Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 3(37), 18753-18808.
  • [4] Xu, Z. (2018). Fundamental Properties of Graphene. Graphene, 73–102.
  • [5] Mi, H. Y., Jing, X., Politowicz, A. L., Chen, E., Huang, H. X., & Turng, L. S. (2018). Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon, 132, 199-209.
  • [6] Wu, H., Xia, L., Ren, J., Zheng, Q., Xie, F., Jie, W., ... & Lin, D. (2018). A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries. Electrochimica Acta, 278, 83-92.
  • [7] Yanik, M. O., Yigit, E. A., Akansu, Y. E., & Sahmetlioglu, E. (2017). Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy, 138, 883-889.
  • [8] Xu, T., Li, Y., Chen, J., Wu, H., Zhou, X., & Zhang, Z. (2018). Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material. Applied Thermal Engineering, 140, 13-22.
  • [9] Abou Chacra, L., Sabri, M. A., Ibrahim, T. H., Khamis, M. I., Hamdan, N. M., Al-Asheh, S., ... & Fernandez, C. (2018). Application of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil from produced water. Journal of Environmental Chemical Engineering, 6(2), 3018-3033.
  • [10] Xu, Z., Wu, C., Li, F., Chen, W., Guo, T., & Kim, T. W. (2018). Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers. Nano Energy, 49, 274-282.
  • [11] Jara, A. D., Betemariam, A., Woldetinsae, G., & Kim, J. Y. (2019). Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology, 29(5), 671-689.
  • [12] Ikram, R., Jan, B. M., & Ahmad, W. (2020). Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. Journal of Materials Research and Technology, 9(6), 15924-15951.
  • [13] Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. (2019). Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 98, 163-180.
  • [14] Guo, S., & Dong, S. (2011). Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 40(5), 2644-2672.
  • [15] Kumar, N., Salehiyan, R., Chauke, V., Botlhoko, O. J., Setshedi, K., Scriba, M., ... & Ray, S. S. (2021). Top-down synthesis of graphene: A comprehensive review. FlatChem, 27, 100224.
  • [16] Chen, W., Yan, L., & Bangal, P. R. (2010). Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. The Journal of Physical Chemistry C, 114(47), 19885-19890.
  • [17] Whitener Jr, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and related materials, 46, 25-34.
  • [18] Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 3(22), 11700–11715.
  • [19] Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75-127.
  • [20] Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., ... & Lin, J. (2013). Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano energy, 2(3), 377-386.
  • [21] Lonkar, S. P., Deshmukh, Y. S., & Abdala, A. A. (2015). Recent advances in chemical modifications of graphene. Nano Research, 8(4), 1039-1074.
  • [22] Whitener Jr, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and related materials, 46, 25-34.
  • [23] Song, Z., Mu, X., Luo, T., & Xu, Z. (2015). Unzipping of carbon nanotubes is geometry-dependent. Nanotechnology, 27(1), 015601
  • [24] Wang, H., Wang, Y., Hu, Z., & Wang, X. (2012). Cutting and unzipping multiwalled carbon nanotubes into curved graphene nanosheets and their enhanced supercapacitor performance. ACS applied materials & interfaces, 4(12), 6827-6834.
  • [25] Wang, Z., Li, N., Shi, Z., & Gu, Z. (2010). Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology, 21(17), 175602.
  • [26] Subrahmanyam, K. S., Panchakarla, L. S., Govindaraj, A., & Rao, C. N. R. (2009). Simple method of preparing graphene flakes by an arc-discharge method. The Journal of Physical Chemistry C, 113(11), 4257-4259.
  • [27] Kong, X., Zhu, Y., Lei, H., Wang, C., Zhao, Y., Huo, E., ... & Ruan, R. (2020). Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chemical Engineering Journal, 399, 125808.
  • [28] Wang, F., Wang, F., Hong, R., Lv, X., Zheng, Y., & Chen, H. (2020). High-purity few-layer graphene from plasma pyrolysis of methane as conductive additive for LiFePO4 lithium ion battery. Journal of Materials Research and Technology, 9(5), 10004-10015.
  • [29] Thangaraj, B., Mumtaz, F., Abbas, Y., Anjum, D. H., Solomon, P. R., & Hassan, J. (2023). Synthesis of Graphene Oxide from Sugarcane Dry Leaves by Two-Stage Pyrolysis. Molecules, 28(8), 3329.
  • [30] Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., & Pei, S. S. (2008). Graphene segregated on Ni surfaces and transferred to insulators. Applied physics letters, 93(11), 113103.
  • [31] Zhao, P., Kumamoto, A., Kim, S., Chen, X., Hou, B., Chiashi, S., ... & Maruyama, S. (2013). Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol. The Journal of Physical Chemistry C, 117(20), 10755-10763.
  • [32] Zhao, Z., Shan, Z., Zhang, C., Li, Q., Tian, B., Huang, Z., ... & Cai, W. (2015). Study on the diffusion mechanism of graphene grown on copper pockets. Small, 11(12), 1418-1422.
  • [33] Hwang, J., Kim, M., Campbell, D., Alsalman, H. A., Kwak, J. Y., Shivaraman, S., ... & Spencer, M. G. (2013). van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. Acs Nano, 7(1), 385-395.
  • [34] Bhuyan, M., Alam, S., Uddin, M., Islam, M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. International Nano Letters, 6(2), 65-83.
  • [35] Riedl, C., Coletti, C., & Starke, U. (2010). Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. Journal of Physics D: Applied Physics, 43(37), 374009.
  • [36] Garg, K. K., Pandey, S., Kumar, A., Rana, A., Sahoo, N. G., & Singh, R. K. (2022). Graphene nanosheets derived from waste plastic for cost-effective thermoelectric applications. Results in Materials, 13, 100260.
  • [37] Karakoti, M., Pandey, S., Tatrari, G., Dhapola, P. S., Jangra, R., Dhali, S., ... & Sahoo, N. G. (2022). A waste to energy approach for the effective conversion of solid waste plastics into graphene nanosheets using different catalysts for high performance supercapacitors: a comparative study. Materials Advances, 3(4), 2146-2157.
  • [38] Tatrari, G., Tewari, C., Bohra, B. S., Pandey, S., Karakoti, M., Kumar, S., ... & Sahoo, N. G. (2021). Waste plastic derived graphene sheets as nanofillers to enhance mechanical strength of concrete mixture: An inventive approach to deal with universal plastic waste. Cleaner Engineering and Technology, 5, 100275.
  • [39] Liu, H., Chen, W., Zhang, R., Xu, C., Huang, X., Peng, H., ... & Miao, Z. (2021). Bioinspired in situ self-catalyzing strategy towards graphene nanosheets with hierarchical structure derived from biomass for advanced supercapacitors. Applied Surface Science, 566, 150692.
  • [40] Pandey, S., Karakoti, M., Dhali, S., Karki, N., SanthiBhushan, B., Tewari, C., ... & Sahoo, N. G. (2019). Bulk synthesis of graphene nanosheets from plastic waste: an invincible method of solid waste management for better tomorrow. Waste management, 88, 48-55.
  • [41] Pan, F., Jin, J., Fu, X., Liu, Q., & Zhang, J. (2013). Advanced oxygen reduction electrocatalyst based on nitrogen-doped graphene derived from edible sugar and urea. ACS applied materials & interfaces, 5(21), 11108-11114.
  • [42] Danafar, H., Mohammadi, A., Mousazadeh, N., Ghaffarlou, M., Mollasalehi, A., Sharafi, A., ... & Nosrati, H. (2021). An innovative green approach to the production of bio-sourced and nano-sized graphene oxide (GO)-like carbon flakes. Current Research in Green and Sustainable Chemistry, 4, 100200.
  • [43] Sharma, S., Kalita, G., Hirano, R., Shinde, S. M., Papon, R., Ohtani, H., & Tanemura, M. (2014). Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon, 72, 66-73.
  • [44] Wu, T., Ding, G., Shen, H., Wang, H., Sun, L., Jiang, D., ... ve Jiang, M. (2013). Triggering the continuous growth of graphene toward millimeter‐sized grains. Advanced Functional Materials, 23(2), 198-203.
  • [45] Li, Z., Wu, P., Wang, C., Fan, X., Zhang, W., Zhai, X., ... & Hou, J. (2011). Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS nano, 5(4), 3385-3390.
  • [46] Ruan, G., Sun, Z., Peng, Z., & Tour, J. M. (2011). Growth of graphene from food, insects, and waste. ACS nano, 5(9), 7601-7607.
  • [47] Sankar, S., Lee, H., Jung, H., Kim, A., Ahmed, A. T. A., Inamdar, A. I., ... & Kim, D. Y. (2017). Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New Journal of Chemistry, 41(22), 13792-13797.
  • [48] Singh, P., Bahadur, J., & Pal, K. (2017). One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Graphene, 6(3), 61-71.
  • [49] Adolfsson, K. H., Hassanzadeh, S., & Hakkarainen, M. (2015). Valorization of cellulose and waste paper to graphene oxide quantum dots. RSC Advances, 5(34), 26550-26558.
  • [50] Hashmi, A., Singh, A. K., Jain, B., & Singh, A. (2020). Muffle atmosphere promoted fabrication of graphene oxide nanoparticle by agricultural waste. Fullerenes, Nanotubes and Carbon Nanostructures, 28(8), 627-636.
  • [51] Panahi-Kalamuei, M., Amiri, O., & Salavati-Niasari, M. (2020). Green hydrothermal synthesis of high quality single and few layers graphene sheets by bread waste as precursor. Journal of Materials Research and Technology, 9(3), 2679-2690.
  • [52] Li, B., Wu, C., Xu, J., Hu, D., Zhang, T., Fang, X., & Tong, J. (2020). One-pot redox synthesis of graphene from waste graphite of spent lithium ion batteries with peracetic acid assistance. Materials Chemistry and Physics, 241, 122397.
  • [53] Obi, F. O., Ugwuishiwu, B. O., & Nwakaire, J. N. (2016). Agricultural waste concept, generation, utilization and management. Nigerian Journal of Technology, 35(4), 957-964
  • [54] Duque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902.
  • [55] FAO, Strategic Work of FAO For Sustainable Food and Agriculture, in: F.a.A.O.o.t.U.N. (FAO) (Ed.), Food and Agriculture Organization of the United Nations (FAO), 2022.
  • [56] European Commission. Changing the way we use plastic; (https://ec.europa.eu/environment/waste/pdf/pan-european-factsheet.pdf).
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review
Authors

Mahmut Öztürk 0000-0002-1690-8203

Aysun Özkan 0000-0003-1036-7570

Zerrin Günkaya 0000-0002-7553-9129

Mufide Banar 0000-0003-2795-6208

Project Number 22ADP327
Early Pub Date March 18, 2024
Publication Date March 25, 2024
Published in Issue Year 2024 Volume: 36 Issue: 1

Cite

APA Öztürk, M., Özkan, A., Günkaya, Z., Banar, M. (2024). Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme. International Journal of Advances in Engineering and Pure Sciences, 36(1), 103-115. https://doi.org/10.7240/jeps.1235645
AMA Öztürk M, Özkan A, Günkaya Z, Banar M. Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme. JEPS. March 2024;36(1):103-115. doi:10.7240/jeps.1235645
Chicago Öztürk, Mahmut, Aysun Özkan, Zerrin Günkaya, and Mufide Banar. “Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme”. International Journal of Advances in Engineering and Pure Sciences 36, no. 1 (March 2024): 103-15. https://doi.org/10.7240/jeps.1235645.
EndNote Öztürk M, Özkan A, Günkaya Z, Banar M (March 1, 2024) Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme. International Journal of Advances in Engineering and Pure Sciences 36 1 103–115.
IEEE M. Öztürk, A. Özkan, Z. Günkaya, and M. Banar, “Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme”, JEPS, vol. 36, no. 1, pp. 103–115, 2024, doi: 10.7240/jeps.1235645.
ISNAD Öztürk, Mahmut et al. “Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme”. International Journal of Advances in Engineering and Pure Sciences 36/1 (March 2024), 103-115. https://doi.org/10.7240/jeps.1235645.
JAMA Öztürk M, Özkan A, Günkaya Z, Banar M. Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme. JEPS. 2024;36:103–115.
MLA Öztürk, Mahmut et al. “Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme”. International Journal of Advances in Engineering and Pure Sciences, vol. 36, no. 1, 2024, pp. 103-15, doi:10.7240/jeps.1235645.
Vancouver Öztürk M, Özkan A, Günkaya Z, Banar M. Atıklardan Grafen Ve Türevlerinin Sentezlenmesi Üzerine Bir Değerlendirme. JEPS. 2024;36(1):103-15.