Research Article
BibTex RIS Cite
Year 2025, Volume: 2 Issue: 1, 13 - 20, 31.07.2025

Abstract

Project Number

2023-FM-21

References

  • Abdullah A. S., Abou Al-sood M. M., Omara Z. M., Bek M. A. & Kabeel A. E. (2018) Performance evaluation of a new counter flow double pass solar air heater with turbulators. Solar Energy, 173, 398–406. https://doi.org/10.1016/J.SOLENER.2018.07.073
  • Arpaci E., Atayılmaz Ö. & Gemici Z. (2024). Exploring Mathematical Modeling and CFD in Convective Drying of Fruits and Vegetables: A Review. Food and Bioprocess Technology 18(4), 3195–3222. https://doi.org/10.1007/S11947-024-03627-2
  • Bal L. M., Satya S., Naik S. N. & Meda V. (2011). Review of solar dryers with latent heat storage systems for agricultural products. Renewable and Sustainable Energy Reviews, 15(1), 876–880. https://doi.org/10.1016/J.RSER.2010.09.006
  • Barnwal P. & Tiwari G. N. (2008). Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy, 82(12), 1131–1144. https://doi.org/10.1016/J.SOLENER.2008.05.012
  • Belessiotis V. & Delyannis E. (2011). Solar drying. Solar Energy, 85(8), 1665–1691. https://doi.org/10.1016/J.SOLENER.2009.10.001
  • El-Sebaii A. A. & Shalaby S. M. (2012). Solar drying of agricultural products: A review. Renewable and Sustainable Energy Reviews, 16(1), 37–43. https://doi.org/10.1016/J.RSER.2011.07.134
  • Ertekin C. & Yaldiz O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349–359. https://doi.org/10.1016/J.JFOODENG.2003.08.007
  • Esper A. & Mühlbauer W. (1998). Solar drying - an effective means of food preservation. Renewable Energy, 15(1–4), 95–100. https://doi.org/10.1016/S0960-1481(98)00143-8
  • Fadhel M. I., Sopian K. & Daud W. R. W. (2010). Performance analysis of solar-assisted chemical heat-pump dryer. Solar Energy, 84(11), 1920–1928. https://doi.org/10.1016/J.SOLENER.2010.07.001
  • Fudholi A., Sopian K., Ruslan M. H., Alghoul M. A. & Sulaiman M. Y. (2010). Review of solar dryers for agricultural and marine products. Renewable and Sustainable Energy Reviews, 14(1), 1–30. https://doi.org/10.1016/J.RSER.2009.07.032
  • Fudholi Ahmad, Sopian K., Othman M. Y. & Ruslan M. H. (2014). Energy and exergy analyses of solar drying system of red seaweed. Energy and Buildings, 68(PARTA), 121–129. https://doi.org/10.1016/J.ENBUILD.2013.07.072
  • Ghafar H., Yusoff H., Nasir S. M. F. S. A., Ghani K. D. A. & Ismail M. A. (2025). PERFORMANCE EVALUATION OF NATURAL AND FORCED CONVECTION IN SOLAR DRYERS FOR MULLET FISH. Jurnal Teknologi (Sciences & Engineering), 87(1), 43–52. https://doi.org/10.11113/JURNALTEKNOLOGI.V87.22448
  • Güler H. Ö., Sözen A., Tuncer A. D., Afshari F., Khanlari A., Şirin C. & Gungor A. (2020). Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh. Solar Energy, 197, 371–384. https://doi.org/10.1016/J.SOLENER.2020.01.021
  • Hassan A., Joardder M. U. H. & Karim A. (2025). A CFD integrated drying model for improving drying conditions in industry Scale dryers. Thermal Science and Engineering Progress, 61, 103533. https://doi.org/10.1016/J.TSEP.2025.103533
  • Kerse A. Y., Embiale D. T. & Gunjo D. G. (2025). Dehydration of red chilli using an indirect type forced convection solar dryer integrated with thermal energy storage. International Journal of Thermofluids, 26, 101045. https://doi.org/10.1016/J.IJFT.2024.101045
  • Keshani S., Montazeri M. H., Daud W. R. W. & Nourouzi M. M. (2015). CFD Modeling of Air Flow on Wall Deposition in Different Spray Dryer Geometries. Drying Technology, 33(7), 784–795. https://doi.org/10.1080/07373937.2014.966201;WGROUP:STRING:PUBLICATION
  • Mustayen A. G. M. B., Mekhilef S. & Saidur R. (2014). Performance study of different solar dryers: A review. Renewable and Sustainable Energy Reviews, 34, 463–470. https://doi.org/10.1016/J.RSER.2014.03.020
  • Ozer R. A. (2025). Heat sink optimization with response surface methodology for single phase immersion cooling. International Journal of Heat and Fluid Flow, 112, 109745. https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2025.109745
  • Sanghi A., Ambrose R. P. K. & Maier D. (2018). CFD simulation of corn drying in a natural convection solar dryer. Drying Technology, 36(7), 859–870. https://doi.org/10.1080/07373937.2017.1359622;WGROUP:STRING:PUBLICATION
  • Shalaby S. M., Bek M. A. & El-Sebaii A. A. (2014a). Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews, 33, 110–116. https://doi.org/10.1016/J.RSER.2014.01.073
  • Shalaby S. M., Bek M. A. & El-Sebaii A. A. (2014b). Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews, 33, 110–116. https://doi.org/10.1016/J.RSER.2014.01.073
  • Sharma A., Chen C. R. & Vu Lan N. (2009). Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews, 13(6–7), 1185–1210. https://doi.org/10.1016/J.RSER.2008.08.015
  • Sodha M. S. & Chandra R. (1994). Solar drying systems and their testing procedures: A review. Energy Conversion and Management, 35(3), 219–267. https://doi.org/10.1016/0196-8904(94)90004-3
  • Souza A. S., Souza Pinto T. C., Sarkis, A. M., Pádua T. F. de & Béttega, R. (2023). Convective drying of iron ore fines: A CFD model validated for different air temperatures and air velocities. Drying Technology, 41(15), 2431–2446. https://doi.org/10.1080/07373937.2023.2252050;JOURNAL:JOURNAL:LDRT20;WGROUP:STRING:PUBLICATION
  • Tu Q., Ma, Z. & Wang H. (2023). Investigation of wet particle drying process in a fluidized bed dryer by CFD simulation and experimental measurement. Chemical Engineering Journal, 452, 139200. https://doi.org/10.1016/J.CEJ.2022.139200
  • Yakut R., Yakut K., Yeşildal F. & Karabey A. (2016). Experimental and Numerical Investigations of Impingement Air Jet for a Heat Sink. Procedia Engineering, 157, 3–12. https://doi.org/10.1016/J.PROENG.2016.08.331

Numerical Optimization of Operating Parameters in a Photovoltaic Drying System

Year 2025, Volume: 2 Issue: 1, 13 - 20, 31.07.2025

Abstract

In this study, the effects of the evaporator design on the thermal and fluid performance of photovoltaic-assisted solar drying systems were investigated using numerical methods. To optimize the temperature and mass flow rate of the air supplied to the drying system, Computational Fluid Dynamics (CFD) analyses were performed on evaporator models with different channel heights (3, 4, and 5 cm) under three different mass flow rate conditions (0.025, 0.050, and 0.075 kg/s). The obtained temperature contours and streamline patterns revealed that, particularly at a channel height of 3 cm and mass flow rate of 0.075 kg/s, the airflow made more effective contact with the surface, maximizing heat transfer. In contrast, for the 4 cm and 5 cm channels, the airflow moved away from the surface, leading to a reduced cooling performance and increased production costs. Considering the average outlet temperature and velocity values, the best performance was achieved with a 3 cm channel height – 0.075 kg/s mass flow rate configuration. Therefore, to enhance the efficiency of solar-powered drying systems, it is recommended to design an evaporator with a 3 cm channel height and operate it under high flow conditions. This study provides a valuable technical reference for engineers and researchers for the design of PV-based drying systems.

Supporting Institution

Scientific Research Projects Coordination Unit of Kafkas University

Project Number

2023-FM-21

References

  • Abdullah A. S., Abou Al-sood M. M., Omara Z. M., Bek M. A. & Kabeel A. E. (2018) Performance evaluation of a new counter flow double pass solar air heater with turbulators. Solar Energy, 173, 398–406. https://doi.org/10.1016/J.SOLENER.2018.07.073
  • Arpaci E., Atayılmaz Ö. & Gemici Z. (2024). Exploring Mathematical Modeling and CFD in Convective Drying of Fruits and Vegetables: A Review. Food and Bioprocess Technology 18(4), 3195–3222. https://doi.org/10.1007/S11947-024-03627-2
  • Bal L. M., Satya S., Naik S. N. & Meda V. (2011). Review of solar dryers with latent heat storage systems for agricultural products. Renewable and Sustainable Energy Reviews, 15(1), 876–880. https://doi.org/10.1016/J.RSER.2010.09.006
  • Barnwal P. & Tiwari G. N. (2008). Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy, 82(12), 1131–1144. https://doi.org/10.1016/J.SOLENER.2008.05.012
  • Belessiotis V. & Delyannis E. (2011). Solar drying. Solar Energy, 85(8), 1665–1691. https://doi.org/10.1016/J.SOLENER.2009.10.001
  • El-Sebaii A. A. & Shalaby S. M. (2012). Solar drying of agricultural products: A review. Renewable and Sustainable Energy Reviews, 16(1), 37–43. https://doi.org/10.1016/J.RSER.2011.07.134
  • Ertekin C. & Yaldiz O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349–359. https://doi.org/10.1016/J.JFOODENG.2003.08.007
  • Esper A. & Mühlbauer W. (1998). Solar drying - an effective means of food preservation. Renewable Energy, 15(1–4), 95–100. https://doi.org/10.1016/S0960-1481(98)00143-8
  • Fadhel M. I., Sopian K. & Daud W. R. W. (2010). Performance analysis of solar-assisted chemical heat-pump dryer. Solar Energy, 84(11), 1920–1928. https://doi.org/10.1016/J.SOLENER.2010.07.001
  • Fudholi A., Sopian K., Ruslan M. H., Alghoul M. A. & Sulaiman M. Y. (2010). Review of solar dryers for agricultural and marine products. Renewable and Sustainable Energy Reviews, 14(1), 1–30. https://doi.org/10.1016/J.RSER.2009.07.032
  • Fudholi Ahmad, Sopian K., Othman M. Y. & Ruslan M. H. (2014). Energy and exergy analyses of solar drying system of red seaweed. Energy and Buildings, 68(PARTA), 121–129. https://doi.org/10.1016/J.ENBUILD.2013.07.072
  • Ghafar H., Yusoff H., Nasir S. M. F. S. A., Ghani K. D. A. & Ismail M. A. (2025). PERFORMANCE EVALUATION OF NATURAL AND FORCED CONVECTION IN SOLAR DRYERS FOR MULLET FISH. Jurnal Teknologi (Sciences & Engineering), 87(1), 43–52. https://doi.org/10.11113/JURNALTEKNOLOGI.V87.22448
  • Güler H. Ö., Sözen A., Tuncer A. D., Afshari F., Khanlari A., Şirin C. & Gungor A. (2020). Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh. Solar Energy, 197, 371–384. https://doi.org/10.1016/J.SOLENER.2020.01.021
  • Hassan A., Joardder M. U. H. & Karim A. (2025). A CFD integrated drying model for improving drying conditions in industry Scale dryers. Thermal Science and Engineering Progress, 61, 103533. https://doi.org/10.1016/J.TSEP.2025.103533
  • Kerse A. Y., Embiale D. T. & Gunjo D. G. (2025). Dehydration of red chilli using an indirect type forced convection solar dryer integrated with thermal energy storage. International Journal of Thermofluids, 26, 101045. https://doi.org/10.1016/J.IJFT.2024.101045
  • Keshani S., Montazeri M. H., Daud W. R. W. & Nourouzi M. M. (2015). CFD Modeling of Air Flow on Wall Deposition in Different Spray Dryer Geometries. Drying Technology, 33(7), 784–795. https://doi.org/10.1080/07373937.2014.966201;WGROUP:STRING:PUBLICATION
  • Mustayen A. G. M. B., Mekhilef S. & Saidur R. (2014). Performance study of different solar dryers: A review. Renewable and Sustainable Energy Reviews, 34, 463–470. https://doi.org/10.1016/J.RSER.2014.03.020
  • Ozer R. A. (2025). Heat sink optimization with response surface methodology for single phase immersion cooling. International Journal of Heat and Fluid Flow, 112, 109745. https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2025.109745
  • Sanghi A., Ambrose R. P. K. & Maier D. (2018). CFD simulation of corn drying in a natural convection solar dryer. Drying Technology, 36(7), 859–870. https://doi.org/10.1080/07373937.2017.1359622;WGROUP:STRING:PUBLICATION
  • Shalaby S. M., Bek M. A. & El-Sebaii A. A. (2014a). Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews, 33, 110–116. https://doi.org/10.1016/J.RSER.2014.01.073
  • Shalaby S. M., Bek M. A. & El-Sebaii A. A. (2014b). Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews, 33, 110–116. https://doi.org/10.1016/J.RSER.2014.01.073
  • Sharma A., Chen C. R. & Vu Lan N. (2009). Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews, 13(6–7), 1185–1210. https://doi.org/10.1016/J.RSER.2008.08.015
  • Sodha M. S. & Chandra R. (1994). Solar drying systems and their testing procedures: A review. Energy Conversion and Management, 35(3), 219–267. https://doi.org/10.1016/0196-8904(94)90004-3
  • Souza A. S., Souza Pinto T. C., Sarkis, A. M., Pádua T. F. de & Béttega, R. (2023). Convective drying of iron ore fines: A CFD model validated for different air temperatures and air velocities. Drying Technology, 41(15), 2431–2446. https://doi.org/10.1080/07373937.2023.2252050;JOURNAL:JOURNAL:LDRT20;WGROUP:STRING:PUBLICATION
  • Tu Q., Ma, Z. & Wang H. (2023). Investigation of wet particle drying process in a fluidized bed dryer by CFD simulation and experimental measurement. Chemical Engineering Journal, 452, 139200. https://doi.org/10.1016/J.CEJ.2022.139200
  • Yakut R., Yakut K., Yeşildal F. & Karabey A. (2016). Experimental and Numerical Investigations of Impingement Air Jet for a Heat Sink. Procedia Engineering, 157, 3–12. https://doi.org/10.1016/J.PROENG.2016.08.331
There are 26 citations in total.

Details

Primary Language English
Subjects Energy, Numerical Methods in Mechanical Engineering
Journal Section Research Article
Authors

Ridvan Yakut 0000-0000-0000-0000

Rahim Aytuğ Özer 0000-0002-3162-5551

Jülide Erkmen 0000-0002-6199-0816

Project Number 2023-FM-21
Publication Date July 31, 2025
Submission Date May 26, 2025
Acceptance Date June 25, 2025
Published in Issue Year 2025 Volume: 2 Issue: 1

Cite

APA Yakut, R., Özer, R. A., & Erkmen, J. (2025). Numerical Optimization of Operating Parameters in a Photovoltaic Drying System. Journal of Energy Trends, 2(1), 13-20.