Review Article
BibTex RIS Cite
Year 2025, Volume: 2 Issue: 1, 28 - 34, 31.07.2025
https://doi.org/10.5281/zenodo.16415720

Abstract

References

  • Aliramezani, M., Koch, C. R., & Shahbakhti, M. (2022). Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions. Progress in Energy and Combustion Science, 88, 100967.
  • Al-jabiri, A. A., Balla, H. H., Al-zuhairy, M. S., Alahmer, H., Al-Manea, A., Al-Rbaihat, R., & Alahmer, A. (2024). Applied AMT machine learning and multi-objective optimization for enhanced performance and reduced environmental impact of sunflower oil biodiesel in compression ignition engine. International Journal of Thermofluids, 24, 100838.
  • Bai, F. J. J. S., Shanmugaiah, K., Sonthalia, A., Devarajan, Y., & Varuvel, E. G. (2023). Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–Hydrogen fuelled dual fuel engine. International journal of hydrogen energy, 48(60), 23308-23322.
  • Banta, N. J. I., Patrick, N., Offole, F., & Mouangue, R. (2024). Machine learning models for the prediction of turbulent combustion speed for hydrogen-natural gas spark ignition engines. Heliyon, 10(9).
  • Batool, S., Naber, J. D., & Shahbakhti, M. (2024). Machine learning approaches for identification of heat release shapes in a low temperature combustion engine for control applications. Control Engineering Practice, 144, 105838.
  • Bukkarapu, K. R., & Krishnasamy, A. (2024). Evaluating the feasibility of machine learning algorithms for combustion regime classification in biodiesel-fueled homogeneous charge compression ignition engines. Fuel, 374, 132406.
  • Dwight, J. (1998). Aluminium design and construction. CRC Press.
  • Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.
  • Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237-285.
  • Khac, H. N., Modabberian, A., Zenger, K., Niskanen, K., West, A., Zhang, Y., ... & Mikulski, M. (2023). Machine learning methods for emissions prediction in combustion engines with multiple cylinders. IFAC-PapersOnLine, 56(2), 3072-3078.
  • Ma, Y., Yang, D., & Xie, D. (2024). Investigating the effect of fuel properties and environmental parameters on low-octane gasoline-like fuel spray combustion and emissions using machine learning-global sensitivity analysis method. Energy, 306, 132551.
  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
  • Sarker, I. H., Furhad, M. H., & Nowrozy, R. (2021). Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Computer Science, 2(3), 173. Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3), 160.
  • Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., & Ng, A. (2020). Cybersecurity data science: an overview from machine learning perspective. Journal of Big data, 7(1), 41.
  • Sugumaran, V., Thangavel, V., Vijayaragavan, M., Subramanian, B., JS, F. J., & Varuvel, E. G. (2023). Efficacy of machine learning algorithms in estimating emissions in a dual fuel compression ignition engine operating on hydrogen and diesel. International Journal of Hydrogen Energy, 48(99), 39599-39611.
  • Williams, Z., Moiz, A., Cung, K., Smith, M., Briggs, T., Bitsis, C., & Miwa, J. (2022). Generation of Rate-of-Injection (ROI) profile for Computational Fluid Dynamics (CFD) model of Internal Combustion Engine (ICE) using machine learning. Energy and AI, 8, 100148.
  • Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations. Acm Sigmod Record, 31(1), 76-77.

Applications of Machine Learning Algorithms to Internal Combustion Engine Studies

Year 2025, Volume: 2 Issue: 1, 28 - 34, 31.07.2025
https://doi.org/10.5281/zenodo.16415720

Abstract

Petroleum (diesel, gasoline) reserves are depleting as energy demand rises, and the quest for conventional fuels is growing daily. Internal combustion engine research is crucial because of this. Current research on internal combustion engines is expensive, both in terms of setting up the experiment and in terms of the fuels that are employed and consumed. Because of this, machine learning techniques have been used in recent years to estimate engine performance and exhaust emissions. As a result, less time and material are utilized, and high accuracy in estimating the engine's performance and fuel-related exhaust emissions is attained. Machine learning algorithms will be discussed in this study first, followed by an assessment of recent research and findings in the literature.

References

  • Aliramezani, M., Koch, C. R., & Shahbakhti, M. (2022). Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions. Progress in Energy and Combustion Science, 88, 100967.
  • Al-jabiri, A. A., Balla, H. H., Al-zuhairy, M. S., Alahmer, H., Al-Manea, A., Al-Rbaihat, R., & Alahmer, A. (2024). Applied AMT machine learning and multi-objective optimization for enhanced performance and reduced environmental impact of sunflower oil biodiesel in compression ignition engine. International Journal of Thermofluids, 24, 100838.
  • Bai, F. J. J. S., Shanmugaiah, K., Sonthalia, A., Devarajan, Y., & Varuvel, E. G. (2023). Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–Hydrogen fuelled dual fuel engine. International journal of hydrogen energy, 48(60), 23308-23322.
  • Banta, N. J. I., Patrick, N., Offole, F., & Mouangue, R. (2024). Machine learning models for the prediction of turbulent combustion speed for hydrogen-natural gas spark ignition engines. Heliyon, 10(9).
  • Batool, S., Naber, J. D., & Shahbakhti, M. (2024). Machine learning approaches for identification of heat release shapes in a low temperature combustion engine for control applications. Control Engineering Practice, 144, 105838.
  • Bukkarapu, K. R., & Krishnasamy, A. (2024). Evaluating the feasibility of machine learning algorithms for combustion regime classification in biodiesel-fueled homogeneous charge compression ignition engines. Fuel, 374, 132406.
  • Dwight, J. (1998). Aluminium design and construction. CRC Press.
  • Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.
  • Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237-285.
  • Khac, H. N., Modabberian, A., Zenger, K., Niskanen, K., West, A., Zhang, Y., ... & Mikulski, M. (2023). Machine learning methods for emissions prediction in combustion engines with multiple cylinders. IFAC-PapersOnLine, 56(2), 3072-3078.
  • Ma, Y., Yang, D., & Xie, D. (2024). Investigating the effect of fuel properties and environmental parameters on low-octane gasoline-like fuel spray combustion and emissions using machine learning-global sensitivity analysis method. Energy, 306, 132551.
  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
  • Sarker, I. H., Furhad, M. H., & Nowrozy, R. (2021). Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Computer Science, 2(3), 173. Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3), 160.
  • Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., & Ng, A. (2020). Cybersecurity data science: an overview from machine learning perspective. Journal of Big data, 7(1), 41.
  • Sugumaran, V., Thangavel, V., Vijayaragavan, M., Subramanian, B., JS, F. J., & Varuvel, E. G. (2023). Efficacy of machine learning algorithms in estimating emissions in a dual fuel compression ignition engine operating on hydrogen and diesel. International Journal of Hydrogen Energy, 48(99), 39599-39611.
  • Williams, Z., Moiz, A., Cung, K., Smith, M., Briggs, T., Bitsis, C., & Miwa, J. (2022). Generation of Rate-of-Injection (ROI) profile for Computational Fluid Dynamics (CFD) model of Internal Combustion Engine (ICE) using machine learning. Energy and AI, 8, 100148.
  • Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations. Acm Sigmod Record, 31(1), 76-77.
There are 17 citations in total.

Details

Primary Language English
Subjects Energy
Journal Section Reviews
Authors

İlhan Volkan Öner 0000-0003-3065-0189

Publication Date July 31, 2025
Submission Date June 23, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 2 Issue: 1

Cite

APA Öner, İ. V. (2025). Applications of Machine Learning Algorithms to Internal Combustion Engine Studies. Journal of Energy Trends, 2(1), 28-34. https://doi.org/10.5281/zenodo.16415720