Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 427 - 440, 23.06.2020
https://doi.org/10.18596/jotcsa.577101

Abstract

References

  • 1. Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford 1998; 29. 2. Xu F, Wang C, Wang H, Li X, Wan B. Eco-friendly synthesis of pyridines via rhodium-catalyzed cyclization of diynes with oximes. Green Chemistry 2015; 17(2): 799-803.
  • 3. Shingalapur RV, Hosamani KM. An Efficient and Eco-Friendly Tungstate Promoted Zirconia (WO x /ZrO2) Solid Acid Catalyst for the Synthesis of 2-Aryl Benzimidazoles. Catalysis Letters 2010; 137(1-2): 63-8.
  • 4. Chakrabarty M, Sarkar S. Novel clay-mediated, tandem addition–elimination-(Michael) addition reactions of indoles with 3-formylindole: an eco-friendly route to symmetrical and unsymmetrical triindolylmethanes. Tetrahedron Letters 2002; 43(7): 1351-3.
  • 5. Shu XZ, Nguyen S C, He Y, Oba F, Zhang Q, Canlas C, Somorjai GA, Alivisatos AP, Toste FD. Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions. J. Am. Chem. Soc. 2015; 137(22): 7083-6.
  • 6. Sun J, Zhan WW, Akita T, Xu Q. Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer. J. Am. Chem. Soc. 2015; 137(22): 7063-6.
  • 7. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews 2015; 44(19): 6804-49.
  • 8. Pirkanniemi K, Sillanpää M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 2002(10); 48: 1047-60.
  • 9. Abba MO, Gonzalez-DelaCruz VM, Colón G, Sebti S, Caballero A. In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane. Applied Catalysis B: Environmental 2014; 150-151: 459-65.
  • 10. Sebti S, Smahi A, Solhy A. Natural phosphate doped with potassium fluoride and modified with sodium nitrate: efficient catalysts for the Knoevenagel condensation. Tetrahedron Letters 2002; 43(10): 1813-5.
  • 11. Ramananarivo HR, Solhy A, Sebti J, Smahi A, Zahouily M, Clark J, Sebti S. An Eco-Friendly Paradigm for the Synthesis of α-Hydroxyphosphonates Using Sodium-Modified Fluorapatite under Solventless Conditions. ACS Sustainable Chemistry & Engineering 2013; 1(4): 403-9.
  • 12. Hassine A, Sebti S, Solhy A, Zahouily M, Len C, Hedhili MN, Fihri A. Palladium supported on natural phosphate: Catalyst for Suzuki coupling reactions in water. Applied Catalysis A: General 2013; 450: 13-8.
  • 13. Hassine A, Bouhrara M, Sebti S, Solhy A, Mahfouz R, Luart D, Len C, Fihri A. Natural Phosphate-supported Palladium: A Highly Efficient and Recyclable Catalyst for the Suzuki-Miyaura Coupling Under Microwave Irradiation. Current Organic Chemistry 2014; 18(24): 3141-8.
  • 14. Bahammou I, Esaady A, Boukhris S, Ghailane R, Habbadi N, Hassikou A, Souizi A. Direct use of mineral phosphate fertilizers MAP, DAP, and TSP as heterogeneous catalysts in organic reactions. Mediterr.J.Chem., 2016; 5(6): 615-23.
  • 15. Zimou O, Malek B, Elhallaoui A, Ghailane T, Ghailane R, Boukhris S, Habbadi N, Hassikou A, Souizi A. Valorization of the Phosphate Fertilizers Catalytic Activity in 1- (Benzothiazolylamino) Methy l-2-Naphthol Derivatives Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis 2019; 14 (2): 238-46.
  • 16. Hugo WB, Stretton RG. Action of Quinacillin on Staphylococcus aureus. Nature 1964; 202: 1217.
  • 17. Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of Brimonidine on Aqueous Humor Dynamics in Human Eyes. Archives of Ophthalmology 1995; 113(12): 1514-7.
  • 18. Chávez JJE, Merino V, Cervantes ML, Cruz IMR, Guerrero DQ, Quintanar AG. The Use of Iontophoresis in the Administration of Nicotine and New Non-Nicotine Drugs through the Skin for Smoking Cessation. Current Drug Discovery Technologies 2009; 6(3): 171-85.
  • 19. Arbiser JL, Moschella SL. Clofazimine: A review of its medical uses and mechanisms of action. Journal of the American Academy of Dermatology 1995; 32(2): 241-7.
  • 20. Dell A, Williams DH, Morris HR, Smith GA, Feeney J, Roberts GCK. Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc. 1975; 97(9): 2497-502.
  • 21. Bailly C, Echepare S, Gago F, Waring M. (1999) Recognition elements that determine affinity and sequence-specific binding to DNA of 2QN, a biosynthetic bis-quinoline analogue of echinomycin, Anti-Cancer Drug Design 1999; 14(3): 291-303.
  • 22. Taylor J. Inhibition of interferon action by actinomycin. Biochemical and biophysical research communications 1964; 14: 447-51.
  • 23. Pereira J A, Pessoa A M, Cordeiro MNDS, Fernandes R, Prudêncio C, Noronha JP, Vieira M. Quinoxaline, its derivatives and applications: A State of the Art review. European Journal of Medicinal Chemistry 2015; 97: 664-72.
  • 24. Vieira M, Pinheiro C, Fernandes R, Noronha JP, Prudêncio C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiological Research 2014; 169(4): 287-93.
  • 25. Bahekar RH, Jain MR, Gupta AA, Goel A, Jadav PA, Patel DN, Prajapati VM, Patel PR. (2007) Synthesis and Antidiabetic Activity of 3,6,7‐Trisubstituted‐2‐(1H‐imidazol‐2‐ylsulfanyl)quinoxalines and Quinoxalin‐2‐yl isothioureas. Arch. Pharm. Chem. Life Sci, 340(7): 359-66.
  • 26. Burguete A, Pontiki E, Hadjipavlou‐Litina D, Ancizu S, Villar R, Solano B, Moreno E, Torres EE, Pérez S, Aldana I, Monge A. (2011) Synthesis and Biological Evaluation of New Quinoxaline Derivatives as Antioxidant and Anti‐Inflammatory Agents. Chemical Biology & Drug Design 2011; 77(4): 255-67.
  • 27. Cogo J, Kaplum V, Sangi DP, Ueda-Nakamura T, Corrêa AG, Nakamura CV. Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents. European Journal of Medicinal Chemistry 2014; 90: 107-23.
  • 28. Tseng CH, Chen YR, Tzeng CC, Liu W, Chou CK, Chiu CC, Chen YL. Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. European Journal of Medicinal Chemistry 2015; 108: 258-73.
  • 29. Sarges R, Lyga J W. Synthesis and aldose reductase inhibitory activity of N‐1, N‐4‐disubstituted 3,4‐dihydro‐2(1H)‐quinoxalinone derivatives. Journal of Heterocyclic Chemistry 1988; 25(5): 1475-9.
  • 30. Schepetkin IA, Kirpotina LN, Khlebnikov AI, Hanks TS, Kochetkova I, Pascual DW, Jutila MA, Quinn MT. Identification and Characterization of a Novel Class of c-Jun N-terminal Kinase Inhibitors. Molecular Pharmacology 2012; 81(6): 832-45.
  • 31. Saranya J, Sounthari P, Parameswari K, Chitra S. Acenaphtho[1,2-b]quinoxaline and acenaphtho[1,2-b]pyrazine as corrosion inhibitors for mild steel in acid medium, Measurement 2016; 77: 175.
  • 32. Olasunkanmi LO, Kabanda MM, Ebenso EE. Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies. Physica E 2016; 76: 109-26.
  • 33. Zarrouk A, Zarrok H, Salghi R, Hammouti B, Al-Deyab SS, Touzani R, Bouachrine M, Warad I, Hadda T B. A Theoretical Investigation on the Corrosion Inhibition of Copper by Quinoxaline Derivatives in Nitric Acid Solution, International Journal of Electrochemical Science 2012; 7: 6353-64.
  • 34. Aparicio D, Attanasi OA, Filippone P, Ignacio R, Lillini S, Mantellini F, Palacios F, Santos JMDL. Straightforward Access to Pyrazines, Piperazinones, and Quinoxalines by Reactions of 1,2-Diaza-1,3-butadienes with 1,2-Diamines under Solution, Solvent-Free, or Solid-Phase Conditions. Journal of Organic Chemistry 2006; 71(16): 5897-905.
  • 35. Singh SK, Gupta P, Duggineni S, Kundu B. Solid Phase Synthesis of Quinoxalines. Synlett 2003; 14: 2147-50.
  • 36. Taylor EC, Maryanoff CA, Skotnickilc JS. Heterocyclization with cyano and sulfonyl epoxides. Preparation of quinoxalines and tetrahydro quinoxalines. Journal of Organic Chemistry 1980; 45(12): 2512-5.
  • 37. Kamal A, Babu KS, Hussaini SA, Mahesh R, Alarifi A. Amberlite IR-120H, an efficient and recyclable solid phase catalyst for the synthesis of quinoxalines: a greener approach. Tetrahedron Letters 2015; 56(21): 2803-8.
  • 38. Huang T, Jiang D, Chen J, Gao W, Ding J, Wu H. Silica Sulfuric Acid (SSA)/Polyethylene Glycol (PEG) as a Recyclable System for the Synthesis of Quinoxalines and Pyrazines, Synthetic Communications 2011; 41(22): 3334-43.
  • 39. Javidi J, Esmaeilpour M. Fe3O4@SiO2–imid–PMAn magnetic porous nanosphere as recyclable catalyst for the green synthesis of quinoxaline derivatives at room temperature and study of their antifungal activities. Materials Research Bulletin 2016; 73: 409-22.
  • 40. Digwal CS, Yadav U, Sakla AP, Ramya PVS, Aaghaz S, Kamal A. VOSO4 catalyzed the highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters 2016; 57(36): 4012-6.
  • 41. Andriamitantsoa RS, Wang J, Dong W, Gao H, Wang G. SO3H-functionalized metal-organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Advances 2016; 6: 35135-43.

Eco-friendly Synthesis of Quinoxaline Derivatives Using Mineral Fertilizers as Heterogeneous Catalysts

Year 2020, Volume: 7 Issue: 2, 427 - 440, 23.06.2020
https://doi.org/10.18596/jotcsa.577101

Abstract

The synthesis of quinoxaline derivatives were heterogeneously catalyzed by phosphate-based catalyst fertilizers, MAP, DAP, or TSP. The reaction affords the desired products in excellent yields at ambient temperature. A series of studies were conducted to investigate the effect of solvent reaction, its volume, and catalyst amount. A study of the recyclability of catalysts removed from the reaction mixture by simple filtration was also carried out to find that the three phosphate-based catalysts retain their catalytic activities up to six cycles.

References

  • 1. Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford 1998; 29. 2. Xu F, Wang C, Wang H, Li X, Wan B. Eco-friendly synthesis of pyridines via rhodium-catalyzed cyclization of diynes with oximes. Green Chemistry 2015; 17(2): 799-803.
  • 3. Shingalapur RV, Hosamani KM. An Efficient and Eco-Friendly Tungstate Promoted Zirconia (WO x /ZrO2) Solid Acid Catalyst for the Synthesis of 2-Aryl Benzimidazoles. Catalysis Letters 2010; 137(1-2): 63-8.
  • 4. Chakrabarty M, Sarkar S. Novel clay-mediated, tandem addition–elimination-(Michael) addition reactions of indoles with 3-formylindole: an eco-friendly route to symmetrical and unsymmetrical triindolylmethanes. Tetrahedron Letters 2002; 43(7): 1351-3.
  • 5. Shu XZ, Nguyen S C, He Y, Oba F, Zhang Q, Canlas C, Somorjai GA, Alivisatos AP, Toste FD. Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions. J. Am. Chem. Soc. 2015; 137(22): 7083-6.
  • 6. Sun J, Zhan WW, Akita T, Xu Q. Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer. J. Am. Chem. Soc. 2015; 137(22): 7063-6.
  • 7. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews 2015; 44(19): 6804-49.
  • 8. Pirkanniemi K, Sillanpää M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 2002(10); 48: 1047-60.
  • 9. Abba MO, Gonzalez-DelaCruz VM, Colón G, Sebti S, Caballero A. In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane. Applied Catalysis B: Environmental 2014; 150-151: 459-65.
  • 10. Sebti S, Smahi A, Solhy A. Natural phosphate doped with potassium fluoride and modified with sodium nitrate: efficient catalysts for the Knoevenagel condensation. Tetrahedron Letters 2002; 43(10): 1813-5.
  • 11. Ramananarivo HR, Solhy A, Sebti J, Smahi A, Zahouily M, Clark J, Sebti S. An Eco-Friendly Paradigm for the Synthesis of α-Hydroxyphosphonates Using Sodium-Modified Fluorapatite under Solventless Conditions. ACS Sustainable Chemistry & Engineering 2013; 1(4): 403-9.
  • 12. Hassine A, Sebti S, Solhy A, Zahouily M, Len C, Hedhili MN, Fihri A. Palladium supported on natural phosphate: Catalyst for Suzuki coupling reactions in water. Applied Catalysis A: General 2013; 450: 13-8.
  • 13. Hassine A, Bouhrara M, Sebti S, Solhy A, Mahfouz R, Luart D, Len C, Fihri A. Natural Phosphate-supported Palladium: A Highly Efficient and Recyclable Catalyst for the Suzuki-Miyaura Coupling Under Microwave Irradiation. Current Organic Chemistry 2014; 18(24): 3141-8.
  • 14. Bahammou I, Esaady A, Boukhris S, Ghailane R, Habbadi N, Hassikou A, Souizi A. Direct use of mineral phosphate fertilizers MAP, DAP, and TSP as heterogeneous catalysts in organic reactions. Mediterr.J.Chem., 2016; 5(6): 615-23.
  • 15. Zimou O, Malek B, Elhallaoui A, Ghailane T, Ghailane R, Boukhris S, Habbadi N, Hassikou A, Souizi A. Valorization of the Phosphate Fertilizers Catalytic Activity in 1- (Benzothiazolylamino) Methy l-2-Naphthol Derivatives Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis 2019; 14 (2): 238-46.
  • 16. Hugo WB, Stretton RG. Action of Quinacillin on Staphylococcus aureus. Nature 1964; 202: 1217.
  • 17. Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of Brimonidine on Aqueous Humor Dynamics in Human Eyes. Archives of Ophthalmology 1995; 113(12): 1514-7.
  • 18. Chávez JJE, Merino V, Cervantes ML, Cruz IMR, Guerrero DQ, Quintanar AG. The Use of Iontophoresis in the Administration of Nicotine and New Non-Nicotine Drugs through the Skin for Smoking Cessation. Current Drug Discovery Technologies 2009; 6(3): 171-85.
  • 19. Arbiser JL, Moschella SL. Clofazimine: A review of its medical uses and mechanisms of action. Journal of the American Academy of Dermatology 1995; 32(2): 241-7.
  • 20. Dell A, Williams DH, Morris HR, Smith GA, Feeney J, Roberts GCK. Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc. 1975; 97(9): 2497-502.
  • 21. Bailly C, Echepare S, Gago F, Waring M. (1999) Recognition elements that determine affinity and sequence-specific binding to DNA of 2QN, a biosynthetic bis-quinoline analogue of echinomycin, Anti-Cancer Drug Design 1999; 14(3): 291-303.
  • 22. Taylor J. Inhibition of interferon action by actinomycin. Biochemical and biophysical research communications 1964; 14: 447-51.
  • 23. Pereira J A, Pessoa A M, Cordeiro MNDS, Fernandes R, Prudêncio C, Noronha JP, Vieira M. Quinoxaline, its derivatives and applications: A State of the Art review. European Journal of Medicinal Chemistry 2015; 97: 664-72.
  • 24. Vieira M, Pinheiro C, Fernandes R, Noronha JP, Prudêncio C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiological Research 2014; 169(4): 287-93.
  • 25. Bahekar RH, Jain MR, Gupta AA, Goel A, Jadav PA, Patel DN, Prajapati VM, Patel PR. (2007) Synthesis and Antidiabetic Activity of 3,6,7‐Trisubstituted‐2‐(1H‐imidazol‐2‐ylsulfanyl)quinoxalines and Quinoxalin‐2‐yl isothioureas. Arch. Pharm. Chem. Life Sci, 340(7): 359-66.
  • 26. Burguete A, Pontiki E, Hadjipavlou‐Litina D, Ancizu S, Villar R, Solano B, Moreno E, Torres EE, Pérez S, Aldana I, Monge A. (2011) Synthesis and Biological Evaluation of New Quinoxaline Derivatives as Antioxidant and Anti‐Inflammatory Agents. Chemical Biology & Drug Design 2011; 77(4): 255-67.
  • 27. Cogo J, Kaplum V, Sangi DP, Ueda-Nakamura T, Corrêa AG, Nakamura CV. Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents. European Journal of Medicinal Chemistry 2014; 90: 107-23.
  • 28. Tseng CH, Chen YR, Tzeng CC, Liu W, Chou CK, Chiu CC, Chen YL. Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. European Journal of Medicinal Chemistry 2015; 108: 258-73.
  • 29. Sarges R, Lyga J W. Synthesis and aldose reductase inhibitory activity of N‐1, N‐4‐disubstituted 3,4‐dihydro‐2(1H)‐quinoxalinone derivatives. Journal of Heterocyclic Chemistry 1988; 25(5): 1475-9.
  • 30. Schepetkin IA, Kirpotina LN, Khlebnikov AI, Hanks TS, Kochetkova I, Pascual DW, Jutila MA, Quinn MT. Identification and Characterization of a Novel Class of c-Jun N-terminal Kinase Inhibitors. Molecular Pharmacology 2012; 81(6): 832-45.
  • 31. Saranya J, Sounthari P, Parameswari K, Chitra S. Acenaphtho[1,2-b]quinoxaline and acenaphtho[1,2-b]pyrazine as corrosion inhibitors for mild steel in acid medium, Measurement 2016; 77: 175.
  • 32. Olasunkanmi LO, Kabanda MM, Ebenso EE. Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies. Physica E 2016; 76: 109-26.
  • 33. Zarrouk A, Zarrok H, Salghi R, Hammouti B, Al-Deyab SS, Touzani R, Bouachrine M, Warad I, Hadda T B. A Theoretical Investigation on the Corrosion Inhibition of Copper by Quinoxaline Derivatives in Nitric Acid Solution, International Journal of Electrochemical Science 2012; 7: 6353-64.
  • 34. Aparicio D, Attanasi OA, Filippone P, Ignacio R, Lillini S, Mantellini F, Palacios F, Santos JMDL. Straightforward Access to Pyrazines, Piperazinones, and Quinoxalines by Reactions of 1,2-Diaza-1,3-butadienes with 1,2-Diamines under Solution, Solvent-Free, or Solid-Phase Conditions. Journal of Organic Chemistry 2006; 71(16): 5897-905.
  • 35. Singh SK, Gupta P, Duggineni S, Kundu B. Solid Phase Synthesis of Quinoxalines. Synlett 2003; 14: 2147-50.
  • 36. Taylor EC, Maryanoff CA, Skotnickilc JS. Heterocyclization with cyano and sulfonyl epoxides. Preparation of quinoxalines and tetrahydro quinoxalines. Journal of Organic Chemistry 1980; 45(12): 2512-5.
  • 37. Kamal A, Babu KS, Hussaini SA, Mahesh R, Alarifi A. Amberlite IR-120H, an efficient and recyclable solid phase catalyst for the synthesis of quinoxalines: a greener approach. Tetrahedron Letters 2015; 56(21): 2803-8.
  • 38. Huang T, Jiang D, Chen J, Gao W, Ding J, Wu H. Silica Sulfuric Acid (SSA)/Polyethylene Glycol (PEG) as a Recyclable System for the Synthesis of Quinoxalines and Pyrazines, Synthetic Communications 2011; 41(22): 3334-43.
  • 39. Javidi J, Esmaeilpour M. Fe3O4@SiO2–imid–PMAn magnetic porous nanosphere as recyclable catalyst for the green synthesis of quinoxaline derivatives at room temperature and study of their antifungal activities. Materials Research Bulletin 2016; 73: 409-22.
  • 40. Digwal CS, Yadav U, Sakla AP, Ramya PVS, Aaghaz S, Kamal A. VOSO4 catalyzed the highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters 2016; 57(36): 4012-6.
  • 41. Andriamitantsoa RS, Wang J, Dong W, Gao H, Wang G. SO3H-functionalized metal-organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Advances 2016; 6: 35135-43.
There are 40 citations in total.

Details

Primary Language English
Subjects Organic Chemistry
Journal Section Articles
Authors

Badr Malek This is me 0000-0002-5424-839X

İmane Bahammou This is me 0000-0002-4713-2057

Omar Zımou This is me 0000-0003-3894-4106

Achraf El Hallaouı This is me 0000-0001-5352-4260

Rachida Ghaılane This is me 0000-0002-6796-1442

Said Boukhris 0000-0001-9541-4318

Abdelaziz Souızı 0000-0002-6241-2954

Publication Date June 23, 2020
Submission Date June 12, 2019
Acceptance Date April 25, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Malek B, Bahammou İ, Zımou O, El Hallaouı A, Ghaılane R, Boukhris S, Souızı A. Eco-friendly Synthesis of Quinoxaline Derivatives Using Mineral Fertilizers as Heterogeneous Catalysts. JOTCSA. 2020;7(2):427-40.