Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 525 - 534, 23.06.2020
https://doi.org/10.18596/jotcsa.733141

Abstract

References

  • 1. Gao M, Li W, Dong J, Zhang Z, Yang B. Synthesis and characterization of superparamagnetic Fe3O4@ SiO2 core-shell composite nanoparticles. World Journal of Condensed Matter Physics. 2011;1(2):49-54.
  • 2. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995-4021.
  • 3. Sajjadi S, Khataee A, Bagheri N, Kobya M, Şenocak A, Demirbas E, et al. Degradation of diazinon pesticide using catalyzed persulfate with Fe3O4@MOF-2 nanocomposite under ultrasound irradiation. Journal of Industrial and Engineering Chemistry. 2019;77:280-90.
  • 4. Carraro G, Barreca D, Comini E, Gasparotto A, Maccato C, Sada C, et al. Controlled synthesis and properties of β-Fe2O3 nanosystems functionalized with Ag or Pt nanoparticles. CrystEngComm. 2012;14(20):6469-76.
  • 5. Kemer B, Demir E. A novel potentiometric pH electrode based on sulfated natural Fe3O4 and analytical application in food samples. Journal of Food Measurement and Characterization. 2018;12(4):2256-62.
  • 6. Surowiec Z, Gac W, Wiertel M. The synthesis and properties of high surface area Fe2O3 materials. Acta Physica Polonica A. 2011;119(1):18-20.
  • 7. Ziolo RF, Giannelis EP, Weinstein BA, O'Horo MP, Ganguly BN, Mehrotra V, et al. Matrix-Mediated Synthesis of Nanocrystalline γ-Fe<sub>2</sub>O<sub>3</sub>: A New Optically Transparent Magnetic Material. Science. 1992;257(5067):219-23.
  • 8. McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. International journal of nanomedicine. 2008;3(2):169.
  • 9. Lu Y, Yin Y, Mayers BT, Xia Y. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach. Nano Letters. 2002;2(3):183-6.
  • 10. Cornejo D, Padrón-Hernández E. Study of magnetization process in ordered Fe nanowire arrays. Journal of Magnetism and Magnetic Materials. 2007;316(2):e48-e51.
  • 11. Demir E. A Simple and Sensitive Square Wave Stripping Pathway for the Analysis of Desmedipham Herbicide by Modified Carbon Paste Electrode Based on Hematite (α-Fe2O3 Nanoparticles). Electroanalysis. 2019;31(8):1545-53.
  • 12. Liao X, Luo J, Wu J, Fan T, Yao Y, Gao F, et al. A sensitive DNAzyme-based electrochemical sensor for Pb2+ detection with platinum nanoparticles decorated TiO2/α-Fe2O3 nanocomposite as signal labels. Journal of Electroanalytical Chemistry. 2018;829:129-37.
  • 13. Nomnotho J, Sabela M, Kanchi S, Mdluli P, Xhakaza M, Arodola O, et al. MWCNTs- Fe2O3 nanoparticles nanohybrids based highly sensitive electrochemical sensor for the detection of kaempferol in broccoli samples. Turkish Journal of Chemistry. 2019;43:1229-43.
  • 14. DEMIR E. Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science. 2019;32(4):1123-36.
  • 15. Lino FMA, de Sá LZ, Torres IMS, Rocha ML, Dinis TCP, Ghedini PC, et al. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochimica Acta. 2014;128:25-31.
  • 16. Mosleh M, Ghoreishi SM, Masoum S, Khoobi A. Determination of quercetin in the presence of tannic acid in soft drinks based on carbon nanotubes modified electrode using chemometric approaches. Sensors and Actuators B: Chemical. 2018;272:605-11.
  • 17. Kuyumcu Savan E. Square Wave Voltammetric (SWV) Determination of Quercetin in Tea Samples at a Single-Walled Carbon Nanotube (SWCNT) Modified Glassy Carbon Electrode (GCE). Analytical Letters. 2020;53(6):858-72.
  • 18. Morosanu AC, Benchea AC, Babusca D, Dimitriu DG, Dorohoi DO. Quantum-Mechanical and Solvatochromic Characterization of Quercetin. Analytical Letters. 2017;50(17):2725-39.
  • 19. Şenocak A, Basova T, Demirbas E, Durmuş M. Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT-Subphthalocyanine Hybrid Material. Electroanalysis. 2019;31(9):1697-707.
  • 20. Liu C, Zhang Y, Zhang P, Wang Y. Evaluating Modeling Units and Sub-word Features in Language Models for Turkish ASR2018. 414-8 p.
  • 21. Manokaran J, Muruganantham R, Muthukrishnaraj A, Balasubramanian N. Platinum- polydopamine @SiO2 nanocomposite modified electrode for the electrochemical determination of quercetin. Electrochimica Acta. 2015;168:16-24.
  • 22. Ponnaiah SK, Periakaruppan P. A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin. Microchimica Acta. 2018;185(11):524.
  • 23. Ji Y, Li Y, Ren B, Liu X, Li Y, Soar J. Nitrogen-doped graphene-ionic liquid-glassy carbon microsphere paste electrode for ultra-sensitive determination of quercetin. Microchemical Journal. 2020;155:104689.
  • 24. Yao Z, Yang X, Liu X, Yang Y, Hu Y, Zhao Z. Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode. Mikrochim Acta [Internet]. 2017 2017/12//; 185(1):[70 p.]. Available from: http://europepmc.org/abstract/MED/29594565, https://doi.org/10.1007/s00604-017-2613-5.
  • 25. Jing J, Shi Y, Zhang Q, Wang J, Ruan J. Prediction of Chinese green tea ranking by metabolite profiling using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF/MS). Food Chemistry. 2017;221:311-6.
  • 26. Abdullah AA, Yardım Y, Şentürk Z. The performance of cathodically pretreated boron-doped diamond electrode in cationic surfactant media for enhancing the adsorptive stripping voltammetric determination of catechol-containing flavonoid quercetin in apple juice. Talanta. 2018;187:156-64.
  • 27. Ravichandran R, Rajendran M, Devapiriam D. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chemistry. 2014;146:472-8.
  • 28. Pilařová V, Plachká K, Chrenková L, Najmanová I, Mladěnka P, Švec F, et al. Simultaneous determination of quercetin and its metabolites in rat plasma by using ultra-high performance liquid chromatography tandem mass spectrometry. Talanta. 2018;185:71-9.
  • 29. Şenocak A, Köksoy B, Demirbaş E, Basova T, Durmuş M. 3D SWCNTs-coumarin hybrid material for ultra-sensitive determination of quercetin antioxidant capacity. Sensors and Actuators B: Chemical. 2018;267:165-73.
  • 30. Hua Z, Deng Y, Li K, Yang S. Low-density nanoporous iron foams synthesized by sol-gel autocombustion. Nanoscale Research Letters. 2012;7(1):129.
  • 31. Tadic M, Panjan M, Damnjanovic V, Milosevic I. Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Applied Surface Science. 2014;320:183-7.
  • 32. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 1968;26(1):62-9.
  • 33. Şenocak A, Khataee A, Demirbas E, Doustkhah E. Ultrasensitive detection of rutin antioxidant through a magnetic micro-mesoporous graphitized carbon wrapped Co nanoarchitecture. Sensors and Actuators B: Chemical. 2020;312:127939.
  • 34. Ersin D, Ahmet S, Mouhoum FT-K, Erhan D, Hassan YA-E. Electrochemical Evaluation of the Total Antioxidant Capacity of Yam Food Samples on a Polyglycine-Glassy Carbon Modified Electrode. Current Analytical Chemistry. 2020;16(2):176-83.
  • 35. Şenocak A, Basova T, Demirbas E, Durmuş M. Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT‐Subphthalocyanine Hybrid Material. Electroanalysis. 2019.
  • 36. Zhang Z, Gu S, Ding Y, Shen M, Jiang L. Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosensors and Bioelectronics. 2014;57:239-44.
  • 37. Wang M, Zhang D, Tong Z, Xu X, Yang X. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. Journal of Applied Electrochemistry. 2011;41(2):189-96.
  • 38. Karimi-maleh H, Gupta V, Golestani F, Ahmadzadeh S, Fazli G, Khosravi S. NiO/CNTs Nanocomposite Modified Ionic Liquid Carbon Paste Electrode as a Voltammetric Sensor for Determination of Quercetin. International journal of electrochemical science. 2014;10:3657-67.
  • 39. Sun S, Zhang M, Li Y, He X. A molecularly imprinted polymer with incorporated graphene oxide for electrochemical determination of quercetin. Sensors (Basel). 2013;13(5):5493-506.
  • 40. Wang S, Xu Q, Liu G. Differential Pulse Voltammetric Determination of Uric Acid on Carbon-Coated Iron Nanoparticle Modified Glassy Carbon Electrodes. Electroanalysis. 2008;20(10):1116-20.
  • 41. Şenocak A, Köksoy B, Akyüz D, Koca A, Klyamer D, Basova T, et al. Highly selective and ultra-sensitive electrochemical sensor behavior of 3D SWCNT-BODIPY hybrid material for eserine detection. Biosensors and Bioelectronics. 2019;128:144-50.

Simple and sensitive detection of quercetin antioxidant by TEOS coated magnetic Fe2O3 core-shell

Year 2020, Volume: 7 Issue: 2, 525 - 534, 23.06.2020
https://doi.org/10.18596/jotcsa.733141

Abstract

In this study, α-Fe2O3 and tetraethyl orthosilicate (TEOS) coated Fe2O3 (TEOS@Fe2O3) was synthesized by the sol-gel method. The morphological properties and electrochemical detection of quercetin antioxidant with Fe2O3 and TEOS@Fe2O3 nanomaterials were evaluated. TEOS@Fe2O3 material was modified on a glassy carbon electrode (GCE) for the detection of quercetin with a linear range of 1.0-9.0 μM by square wave voltammetry (SWV). TEOS@Fe2O3/GCE sensor ca 1.6 and 2.5 times more sensitive than Fe2O3/GCE and GCE. The quantification (LOQ) and detection (LOD) limits were found to be 306 and 92 nM for quercetin antioxidant on the TEOS@Fe2O3 modified electrode. Quercetin was also determined in an apple tea sample with a standard addition method and the recovery of quercetin was obtained to be 104.16% and 106.04%. The results obtained from this study show that the TEOS@Fe2O3 modified electrode examined as an voltammetric sensor was found to be simple and sensitive to quercetin.

References

  • 1. Gao M, Li W, Dong J, Zhang Z, Yang B. Synthesis and characterization of superparamagnetic Fe3O4@ SiO2 core-shell composite nanoparticles. World Journal of Condensed Matter Physics. 2011;1(2):49-54.
  • 2. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995-4021.
  • 3. Sajjadi S, Khataee A, Bagheri N, Kobya M, Şenocak A, Demirbas E, et al. Degradation of diazinon pesticide using catalyzed persulfate with Fe3O4@MOF-2 nanocomposite under ultrasound irradiation. Journal of Industrial and Engineering Chemistry. 2019;77:280-90.
  • 4. Carraro G, Barreca D, Comini E, Gasparotto A, Maccato C, Sada C, et al. Controlled synthesis and properties of β-Fe2O3 nanosystems functionalized with Ag or Pt nanoparticles. CrystEngComm. 2012;14(20):6469-76.
  • 5. Kemer B, Demir E. A novel potentiometric pH electrode based on sulfated natural Fe3O4 and analytical application in food samples. Journal of Food Measurement and Characterization. 2018;12(4):2256-62.
  • 6. Surowiec Z, Gac W, Wiertel M. The synthesis and properties of high surface area Fe2O3 materials. Acta Physica Polonica A. 2011;119(1):18-20.
  • 7. Ziolo RF, Giannelis EP, Weinstein BA, O'Horo MP, Ganguly BN, Mehrotra V, et al. Matrix-Mediated Synthesis of Nanocrystalline γ-Fe<sub>2</sub>O<sub>3</sub>: A New Optically Transparent Magnetic Material. Science. 1992;257(5067):219-23.
  • 8. McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. International journal of nanomedicine. 2008;3(2):169.
  • 9. Lu Y, Yin Y, Mayers BT, Xia Y. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach. Nano Letters. 2002;2(3):183-6.
  • 10. Cornejo D, Padrón-Hernández E. Study of magnetization process in ordered Fe nanowire arrays. Journal of Magnetism and Magnetic Materials. 2007;316(2):e48-e51.
  • 11. Demir E. A Simple and Sensitive Square Wave Stripping Pathway for the Analysis of Desmedipham Herbicide by Modified Carbon Paste Electrode Based on Hematite (α-Fe2O3 Nanoparticles). Electroanalysis. 2019;31(8):1545-53.
  • 12. Liao X, Luo J, Wu J, Fan T, Yao Y, Gao F, et al. A sensitive DNAzyme-based electrochemical sensor for Pb2+ detection with platinum nanoparticles decorated TiO2/α-Fe2O3 nanocomposite as signal labels. Journal of Electroanalytical Chemistry. 2018;829:129-37.
  • 13. Nomnotho J, Sabela M, Kanchi S, Mdluli P, Xhakaza M, Arodola O, et al. MWCNTs- Fe2O3 nanoparticles nanohybrids based highly sensitive electrochemical sensor for the detection of kaempferol in broccoli samples. Turkish Journal of Chemistry. 2019;43:1229-43.
  • 14. DEMIR E. Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science. 2019;32(4):1123-36.
  • 15. Lino FMA, de Sá LZ, Torres IMS, Rocha ML, Dinis TCP, Ghedini PC, et al. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochimica Acta. 2014;128:25-31.
  • 16. Mosleh M, Ghoreishi SM, Masoum S, Khoobi A. Determination of quercetin in the presence of tannic acid in soft drinks based on carbon nanotubes modified electrode using chemometric approaches. Sensors and Actuators B: Chemical. 2018;272:605-11.
  • 17. Kuyumcu Savan E. Square Wave Voltammetric (SWV) Determination of Quercetin in Tea Samples at a Single-Walled Carbon Nanotube (SWCNT) Modified Glassy Carbon Electrode (GCE). Analytical Letters. 2020;53(6):858-72.
  • 18. Morosanu AC, Benchea AC, Babusca D, Dimitriu DG, Dorohoi DO. Quantum-Mechanical and Solvatochromic Characterization of Quercetin. Analytical Letters. 2017;50(17):2725-39.
  • 19. Şenocak A, Basova T, Demirbas E, Durmuş M. Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT-Subphthalocyanine Hybrid Material. Electroanalysis. 2019;31(9):1697-707.
  • 20. Liu C, Zhang Y, Zhang P, Wang Y. Evaluating Modeling Units and Sub-word Features in Language Models for Turkish ASR2018. 414-8 p.
  • 21. Manokaran J, Muruganantham R, Muthukrishnaraj A, Balasubramanian N. Platinum- polydopamine @SiO2 nanocomposite modified electrode for the electrochemical determination of quercetin. Electrochimica Acta. 2015;168:16-24.
  • 22. Ponnaiah SK, Periakaruppan P. A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin. Microchimica Acta. 2018;185(11):524.
  • 23. Ji Y, Li Y, Ren B, Liu X, Li Y, Soar J. Nitrogen-doped graphene-ionic liquid-glassy carbon microsphere paste electrode for ultra-sensitive determination of quercetin. Microchemical Journal. 2020;155:104689.
  • 24. Yao Z, Yang X, Liu X, Yang Y, Hu Y, Zhao Z. Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode. Mikrochim Acta [Internet]. 2017 2017/12//; 185(1):[70 p.]. Available from: http://europepmc.org/abstract/MED/29594565, https://doi.org/10.1007/s00604-017-2613-5.
  • 25. Jing J, Shi Y, Zhang Q, Wang J, Ruan J. Prediction of Chinese green tea ranking by metabolite profiling using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF/MS). Food Chemistry. 2017;221:311-6.
  • 26. Abdullah AA, Yardım Y, Şentürk Z. The performance of cathodically pretreated boron-doped diamond electrode in cationic surfactant media for enhancing the adsorptive stripping voltammetric determination of catechol-containing flavonoid quercetin in apple juice. Talanta. 2018;187:156-64.
  • 27. Ravichandran R, Rajendran M, Devapiriam D. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chemistry. 2014;146:472-8.
  • 28. Pilařová V, Plachká K, Chrenková L, Najmanová I, Mladěnka P, Švec F, et al. Simultaneous determination of quercetin and its metabolites in rat plasma by using ultra-high performance liquid chromatography tandem mass spectrometry. Talanta. 2018;185:71-9.
  • 29. Şenocak A, Köksoy B, Demirbaş E, Basova T, Durmuş M. 3D SWCNTs-coumarin hybrid material for ultra-sensitive determination of quercetin antioxidant capacity. Sensors and Actuators B: Chemical. 2018;267:165-73.
  • 30. Hua Z, Deng Y, Li K, Yang S. Low-density nanoporous iron foams synthesized by sol-gel autocombustion. Nanoscale Research Letters. 2012;7(1):129.
  • 31. Tadic M, Panjan M, Damnjanovic V, Milosevic I. Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Applied Surface Science. 2014;320:183-7.
  • 32. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 1968;26(1):62-9.
  • 33. Şenocak A, Khataee A, Demirbas E, Doustkhah E. Ultrasensitive detection of rutin antioxidant through a magnetic micro-mesoporous graphitized carbon wrapped Co nanoarchitecture. Sensors and Actuators B: Chemical. 2020;312:127939.
  • 34. Ersin D, Ahmet S, Mouhoum FT-K, Erhan D, Hassan YA-E. Electrochemical Evaluation of the Total Antioxidant Capacity of Yam Food Samples on a Polyglycine-Glassy Carbon Modified Electrode. Current Analytical Chemistry. 2020;16(2):176-83.
  • 35. Şenocak A, Basova T, Demirbas E, Durmuş M. Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT‐Subphthalocyanine Hybrid Material. Electroanalysis. 2019.
  • 36. Zhang Z, Gu S, Ding Y, Shen M, Jiang L. Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosensors and Bioelectronics. 2014;57:239-44.
  • 37. Wang M, Zhang D, Tong Z, Xu X, Yang X. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. Journal of Applied Electrochemistry. 2011;41(2):189-96.
  • 38. Karimi-maleh H, Gupta V, Golestani F, Ahmadzadeh S, Fazli G, Khosravi S. NiO/CNTs Nanocomposite Modified Ionic Liquid Carbon Paste Electrode as a Voltammetric Sensor for Determination of Quercetin. International journal of electrochemical science. 2014;10:3657-67.
  • 39. Sun S, Zhang M, Li Y, He X. A molecularly imprinted polymer with incorporated graphene oxide for electrochemical determination of quercetin. Sensors (Basel). 2013;13(5):5493-506.
  • 40. Wang S, Xu Q, Liu G. Differential Pulse Voltammetric Determination of Uric Acid on Carbon-Coated Iron Nanoparticle Modified Glassy Carbon Electrodes. Electroanalysis. 2008;20(10):1116-20.
  • 41. Şenocak A, Köksoy B, Akyüz D, Koca A, Klyamer D, Basova T, et al. Highly selective and ultra-sensitive electrochemical sensor behavior of 3D SWCNT-BODIPY hybrid material for eserine detection. Biosensors and Bioelectronics. 2019;128:144-50.
There are 41 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Articles
Authors

Ahmet Şenocak 0000-0002-7503-4059

Publication Date June 23, 2020
Submission Date May 6, 2020
Acceptance Date May 17, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Şenocak A. Simple and sensitive detection of quercetin antioxidant by TEOS coated magnetic Fe2O3 core-shell. JOTCSA. 2020;7(2):525-34.