Research Article
BibTex RIS Cite

Rapid processes for the production of nanocrystal yttria-stabilized tetragonal zirconia polycrystalline ceramics: ultrasonic spray pyrolysis synthesis and high-frequency induction sintering

Year 2023, Issue: 055, 83 - 91, 31.12.2023
https://doi.org/10.59313/jsr-a.1284493

Abstract

In this study, nanocrystalline 3 mol % yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic was produced by sintering with a high-frequency induction heating (HFIH) system of granular powders obtained by ultrasonic spray pyrolysis (USP) at 600 °C. The granular nano-sized powders (10-30 nm) were micron in size (average size: 700 nm), spherical in shape and amorphous. The influences of the HFIH sintering temperature (1400-1600 °C), applied current time (60-300 sec.) and the mechanical pressure (10 MPa and 20 MPa) on the final density and grain size of the products were investigated. The amorphous granular Y-TZP powders compressed with the HFIH system allow very rapid condensation in the tetragonal phase at high density and avoid grain growth. High density (relative density over 95) nanocrystalline Y-TZP ceramic with ∼70 nm size could be obtained from the simultaneous application of 20 MPa pressure and an induced current within 300 sec. of sintering time at 1500 °C. In this condition, the sample’s maximum hardness and fracture toughness values were reached at 14.9 GPa and 3.8 MPa·m1/2, respectively. Y-TZP powders produced in nano-micro structure with the USP system were sintered with the HFIH system and rapid production was achieved by preventing grain growth.

References

  • [1] J. Li, J. Peng, S. Guo, L. Zhang, Application of response surface methodology (RSM) for optimization of the sintering process of preparation calcia partially stabilized zirconia (CaO-PSZ) using natural baddeleyite, J. Alloys Compd. 574 (2013) 504–511.
  • [2] G. Rauchs, T. Fett, D. Munz, R. Oberacker, Tetragonal-to-monoclinic phase transformation in CeO2 -stabilized zirconia under multiaxial loading, J. Eur. Ceram. Soc. 22 (2002) 841–849.
  • [3] Y. Zhao, Y. Gao, Structural evolution of plasma-sprayed nanoscale 3 mol% and 5 mol% yttria-stabilized zirconia coatings during sintering, Appl. Surf. Sci. 425 (2017) 1033–1039.
  • [4] L. Hao, D.R. Ma, J. Lawrence, X. Zhu, Enhancing osteoblast functions on a magnesia partially stabilised zirconia bioceramic by means of laser irradiation, Mater. Sci. Eng. C. 25 (2005) 496–502.
  • [5] M. Trunec, Z. Chlup, Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure, Scr. Mater. 61 (2009) 56–59.
  • [6] F. Wakai, S. Sakaguchi, Y. Matsuno, Superplasticity of Yttria-Stabilized Tetragonal Zr02 Polycrystals, Advanced Ceramic Materials 1 (1986) 259-263.
  • [7] A. Bravo-Leon, Y. Morikawa, M. Kawahara, M.J. Mayo, Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content, Acta Mater. 50 (2002) 4555–4562.
  • [8] T. Okamoto, K. Yasuda, T. Shiota, Grain motion statistics of polycrystalline zirconia during superplastic deformation, Scr. Mater. 64 (2011) 253–255.
  • [9] Y. Ye, J. Li, H. Zhou, J. Chen, Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics, Ceram. Int. 34 (2008) 1797–1803.
  • [10] A.S. Gandhi, V. Jayaram, A.H. Chokshi, Dense Amorphous Zirconia – Alumina by Low-Temperature Consolidation of Spray-Pyrolyzed Powders, J. Am. Ceram. Soc. 82 (1999) 2613–2618.
  • [11] L. Gan, Y. Park, H. Kim, J. Kim, J. Ko, J. Lee, Journal of the European Ceramic Society Fabrication and microstructure of hot pressed laminated Y2O3/Nd :Y2O3/Y2O3 transparent ceramics, Journal of the European Ceramic Society Volume 36, (2016) 911–916.
  • [12] R. Poyato, J. MacÍas-Delgado, A. García-Valenzuela, R.L. González-Romero, A. Muñoz, A. Domínguez-Rodríguez, Electrical properties of reduced 3YTZP ceramics consolidated by spark plasma sintering, Ceram. Int. 42 (2016) 6713–6719.
  • [13] C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceram. Int. 37 (2011) 935–942.
  • [14] A. Gionea, E. Andronescu, G. Voicu, C. Bleotu, V.A. Surdu, Influence of hot isostatic pressing on ZrO2–CaO dental ceramics properties, Int. J. Pharm. 510 (2016) 439–448.
  • [15] K.A. Khalıl, S.W. Kim, Mechanical wet-milling and subsequent consolidation of ultra-fine Al2O3-(ZrO2+3%Y2O3) bioceramics by using high-frequency induction heat sintering, Trans. Nonferrous Met. Soc. China. 17 (2007) 21–26.
  • [16] S.W. Kim, S.L. Cockcroft, K.A. Khalil, K. Ogi, Sintering behavior of ultra-fine Al2O3-(ZrO2+Xmol% Y2O3) ceramics by high-frequency induction heating, Mater. Sci. Eng. A. 527 (2010) 4926–4931.
  • [17] S.W. Kim, K.A. Khalil, S.L. Cockcroft, D. Hui, J.H. Lee, Sintering behavior and mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated sintering, Compos. Part B Eng. 45 (2013) 1689–1693.
  • [18] I.J. Shon, I.K. Jeong, J.H. Park, B.R. Kim, K.T. Lee, Effect of Fe2O3 addition on consolidation and properties of 8 mol% yttria-stabilized zirconia by high-frequency induction heated sintering (HFIHS), Ceram. Int. 35 (2009) 363–368.
  • [19] M. Gaudon, E. Djurado, N.H. Menzler, Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis, Ceram. Int. 30 (2004) 2295–2303.
  • [20]M. Chen, J. He, Y. Zhang, Z. Ding, J. Luo, Densification and grain growth behaviour of high-purity MgO ceramics by hot-pressing, Ceram. Int. 43 (2017) 1775–1780.
  • [21] Z. He, J. Ma, Grain-growth rate constant of hot-pressed alumina ceramics, Mater. Lett. 44 (2000) 14–18.
  • [22] A.S. Gandhi, V. Jayaram, A.H. Chokshi, Low temperature densification behaviour of metastable phases in ZrO2–Al2O3 powders produced by spray pyrolysis, Mater. Sci. 306 (2001) 785–789.
  • [23]K. Matsui, H. Yoshida, Y. Ikuhara, Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina, J. Eur. Ceram. Soc. 30 (2010) 1679–1690.
  • [24]S. Tekeli, Influence of alumina addition on grain growth and room temperature mechanical properties of 8YSCZ/Al2O3 composites, Compos. Sci. Technol. 65 (2005) 967–972.
  • [25]Y.W. Hsu, K.H. Yang, K.M. Chang, S.W. Yeh, M.C. Wang, Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloys Compd. 509 (2011) 6864–6870.
  • [26]R. Dwivedi, A. Maurya, A. Verma, R. Prasad, K.S. Bartwal, Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles, J. Alloys Compd. 509 (2011) 6848–6851.
  • [27] Y.N. Ko, S.M. Lee, J.H. Kim, J. Lee, Y.C. Kang, Processing Research Sintering characteristics of nano-sized yttria-stabilized zirconia powders prepared by spray pyrolysis, J. Ceram. Process. Res. 13 (2012) 405–408.
  • [28]M. Koç, Synthesis and Characterization of Nanostructured Y-TZP-Al2O3 Granule Composite Microspheres, PhD thesis, Kütahya Dumlupınar University Institute of Science, Kütahya, (2018) 152s.
  • [29]M. Perez-Page, R. Guzalowski, D.N.F. Muche, R.H.R. Castro, P. Stroeve, Synthesis of porous yttria-stabilized zirconia microspheres by ultrasonic spray pyrolysis, Mater. Lett. 188 (2017) 41–44.
  • [30] A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, J. Mater. Sci. Technol. 31 (2015) 773–783.
  • [31] J. Lubauer, F. H., Schuenemann, R., Belli, U., Lohbauer, Speed‑sintering and the mechanical properties of 3–5 mol% Y2O3‑stabilized zirconias, Odontology (2023) 1-8.
Year 2023, Issue: 055, 83 - 91, 31.12.2023
https://doi.org/10.59313/jsr-a.1284493

Abstract

References

  • [1] J. Li, J. Peng, S. Guo, L. Zhang, Application of response surface methodology (RSM) for optimization of the sintering process of preparation calcia partially stabilized zirconia (CaO-PSZ) using natural baddeleyite, J. Alloys Compd. 574 (2013) 504–511.
  • [2] G. Rauchs, T. Fett, D. Munz, R. Oberacker, Tetragonal-to-monoclinic phase transformation in CeO2 -stabilized zirconia under multiaxial loading, J. Eur. Ceram. Soc. 22 (2002) 841–849.
  • [3] Y. Zhao, Y. Gao, Structural evolution of plasma-sprayed nanoscale 3 mol% and 5 mol% yttria-stabilized zirconia coatings during sintering, Appl. Surf. Sci. 425 (2017) 1033–1039.
  • [4] L. Hao, D.R. Ma, J. Lawrence, X. Zhu, Enhancing osteoblast functions on a magnesia partially stabilised zirconia bioceramic by means of laser irradiation, Mater. Sci. Eng. C. 25 (2005) 496–502.
  • [5] M. Trunec, Z. Chlup, Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure, Scr. Mater. 61 (2009) 56–59.
  • [6] F. Wakai, S. Sakaguchi, Y. Matsuno, Superplasticity of Yttria-Stabilized Tetragonal Zr02 Polycrystals, Advanced Ceramic Materials 1 (1986) 259-263.
  • [7] A. Bravo-Leon, Y. Morikawa, M. Kawahara, M.J. Mayo, Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content, Acta Mater. 50 (2002) 4555–4562.
  • [8] T. Okamoto, K. Yasuda, T. Shiota, Grain motion statistics of polycrystalline zirconia during superplastic deformation, Scr. Mater. 64 (2011) 253–255.
  • [9] Y. Ye, J. Li, H. Zhou, J. Chen, Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics, Ceram. Int. 34 (2008) 1797–1803.
  • [10] A.S. Gandhi, V. Jayaram, A.H. Chokshi, Dense Amorphous Zirconia – Alumina by Low-Temperature Consolidation of Spray-Pyrolyzed Powders, J. Am. Ceram. Soc. 82 (1999) 2613–2618.
  • [11] L. Gan, Y. Park, H. Kim, J. Kim, J. Ko, J. Lee, Journal of the European Ceramic Society Fabrication and microstructure of hot pressed laminated Y2O3/Nd :Y2O3/Y2O3 transparent ceramics, Journal of the European Ceramic Society Volume 36, (2016) 911–916.
  • [12] R. Poyato, J. MacÍas-Delgado, A. García-Valenzuela, R.L. González-Romero, A. Muñoz, A. Domínguez-Rodríguez, Electrical properties of reduced 3YTZP ceramics consolidated by spark plasma sintering, Ceram. Int. 42 (2016) 6713–6719.
  • [13] C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceram. Int. 37 (2011) 935–942.
  • [14] A. Gionea, E. Andronescu, G. Voicu, C. Bleotu, V.A. Surdu, Influence of hot isostatic pressing on ZrO2–CaO dental ceramics properties, Int. J. Pharm. 510 (2016) 439–448.
  • [15] K.A. Khalıl, S.W. Kim, Mechanical wet-milling and subsequent consolidation of ultra-fine Al2O3-(ZrO2+3%Y2O3) bioceramics by using high-frequency induction heat sintering, Trans. Nonferrous Met. Soc. China. 17 (2007) 21–26.
  • [16] S.W. Kim, S.L. Cockcroft, K.A. Khalil, K. Ogi, Sintering behavior of ultra-fine Al2O3-(ZrO2+Xmol% Y2O3) ceramics by high-frequency induction heating, Mater. Sci. Eng. A. 527 (2010) 4926–4931.
  • [17] S.W. Kim, K.A. Khalil, S.L. Cockcroft, D. Hui, J.H. Lee, Sintering behavior and mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated sintering, Compos. Part B Eng. 45 (2013) 1689–1693.
  • [18] I.J. Shon, I.K. Jeong, J.H. Park, B.R. Kim, K.T. Lee, Effect of Fe2O3 addition on consolidation and properties of 8 mol% yttria-stabilized zirconia by high-frequency induction heated sintering (HFIHS), Ceram. Int. 35 (2009) 363–368.
  • [19] M. Gaudon, E. Djurado, N.H. Menzler, Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis, Ceram. Int. 30 (2004) 2295–2303.
  • [20]M. Chen, J. He, Y. Zhang, Z. Ding, J. Luo, Densification and grain growth behaviour of high-purity MgO ceramics by hot-pressing, Ceram. Int. 43 (2017) 1775–1780.
  • [21] Z. He, J. Ma, Grain-growth rate constant of hot-pressed alumina ceramics, Mater. Lett. 44 (2000) 14–18.
  • [22] A.S. Gandhi, V. Jayaram, A.H. Chokshi, Low temperature densification behaviour of metastable phases in ZrO2–Al2O3 powders produced by spray pyrolysis, Mater. Sci. 306 (2001) 785–789.
  • [23]K. Matsui, H. Yoshida, Y. Ikuhara, Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina, J. Eur. Ceram. Soc. 30 (2010) 1679–1690.
  • [24]S. Tekeli, Influence of alumina addition on grain growth and room temperature mechanical properties of 8YSCZ/Al2O3 composites, Compos. Sci. Technol. 65 (2005) 967–972.
  • [25]Y.W. Hsu, K.H. Yang, K.M. Chang, S.W. Yeh, M.C. Wang, Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloys Compd. 509 (2011) 6864–6870.
  • [26]R. Dwivedi, A. Maurya, A. Verma, R. Prasad, K.S. Bartwal, Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles, J. Alloys Compd. 509 (2011) 6848–6851.
  • [27] Y.N. Ko, S.M. Lee, J.H. Kim, J. Lee, Y.C. Kang, Processing Research Sintering characteristics of nano-sized yttria-stabilized zirconia powders prepared by spray pyrolysis, J. Ceram. Process. Res. 13 (2012) 405–408.
  • [28]M. Koç, Synthesis and Characterization of Nanostructured Y-TZP-Al2O3 Granule Composite Microspheres, PhD thesis, Kütahya Dumlupınar University Institute of Science, Kütahya, (2018) 152s.
  • [29]M. Perez-Page, R. Guzalowski, D.N.F. Muche, R.H.R. Castro, P. Stroeve, Synthesis of porous yttria-stabilized zirconia microspheres by ultrasonic spray pyrolysis, Mater. Lett. 188 (2017) 41–44.
  • [30] A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, J. Mater. Sci. Technol. 31 (2015) 773–783.
  • [31] J. Lubauer, F. H., Schuenemann, R., Belli, U., Lohbauer, Speed‑sintering and the mechanical properties of 3–5 mol% Y2O3‑stabilized zirconias, Odontology (2023) 1-8.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Muhterem Koç 0000-0003-3661-4410

Osman Şan 0000-0001-6033-5804

Publication Date December 31, 2023
Submission Date April 17, 2023
Published in Issue Year 2023 Issue: 055

Cite

IEEE M. Koç and O. Şan, “Rapid processes for the production of nanocrystal yttria-stabilized tetragonal zirconia polycrystalline ceramics: ultrasonic spray pyrolysis synthesis and high-frequency induction sintering”, JSR-A, no. 055, pp. 83–91, December 2023, doi: 10.59313/jsr-a.1284493.