Research Article
BibTex RIS Cite

Synthesis and characterization of b-site controlled la-based high entropy perovskite oxides

Year 2023, Issue: 055, 124 - 131, 31.12.2023
https://doi.org/10.59313/jsr-a.1370632

Abstract

High entropy perovskite oxide materials are a highly promising class of materials with a wide range of potential applications. They offer a unique combination of perovskite oxides and high entropy oxides, making them suitable for various fields, particularly in electrochemical energy storage systems and hydrogen production. Given the growing demand for clean energy and efficient energy storage solutions, the development of high entropy materials holds great significance. In this study, a cost-effective and rapid fabrication method was employed to produce several single-phase high entropy perovskite oxides by altering the B-site cations. The results demonstrated that these high entropy perovskite oxides could be synthesized with the same crystal structure, despite having significantly different elemental compositions. These variations in elemental composition led to differences in lattice parameters, metal-oxygen bond strengths, and oxygen vacancy content within the materials. Understanding and manipulating these factors can have important implications for the design of high entropy materials for energy storage and other applications.

References

  • References:
  • [1] George, E. P., Raabe, D., and Ritchie, R. O., “High-entropy alloys”, Nature Reviews Materials, 4(8), 515–534, 2019, https://doi.org/10.1038/s41578-019-0121-4
  • [2] Kante, M. V., Weber, M. L., Ni, S., van den Bosch, I. C. G., van der Minne, E., Heymann, L., Falling, L. J., Gauquelin, N., Tsvetanova, M., Cunha, D. M., Koster, G., Gunkel, F., Nemšák, S., Hahn, H., Velasco Estrada, L., and Baeumer, C., “A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation, ACS”, Nano, 17(6), 5329–5339, 2023, https://doi.org/10.1021/acsnano.2c08096
  • [3] Rost, C. M., Sachet, E., Borman, T., Moballegh, A., Dickey, E. C., Hou, D., Jones, J. L., Curtarolo, S., and Maria, J.-P., “Entropy-stabilized oxides”, Nature Communications, 6(1), 8485, 2015. https://doi.org/10.1038/ncomms9485
  • [4] Okejiri, F., Zhang, Z., Liu, J., Liu, M., Yang, S., & Dai, S., “Room‐Temperature Synthesis of High‐Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication‐Based Method”, ChemSusChem, 13(1), 111–115, 2020, https://doi.org/10.1002/cssc.201902705
  • [5] Liu, Z., Tang, Z., Song, Y., Yang, G., Qian, W., Yang, M., Zhu, Y., Ran, R., Wang, W., Zhou, W., & Shao, Z., “High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells”, Nano-Micro Letters, 14(1), 217, 2022 https://doi.org/10.1007/s40820-022-00967-6
  • [6] Nguyen, T. X., Liao, Y., Lin, C., Su, Y., & Ting, J. (2021), “Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction”, Advanced Functional Materials, 31(27), 2101632, 2021, https://doi.org/10.1002/adfm.202101632
  • [7] Wang, L., Hossain, M. D., Du, Y., & Chambers, S. A. (2022), “Exploring the potential of high entropy perovskite oxides as catalysts for water oxidation”, Nano Today, 47, 101697, 2022 https://doi.org/10.1016/j.nantod.2022.101697
  • [8] Xu, X., Zhong, Y., & Shao, Z., “Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis”, Trends in Chemistry, 1(4), 410–424., 2019, https://doi.org/10.1016/j.trechm.2019.05.006
  • [9] Yin, W.-J., Weng, B., Ge, J., Sun, Q., Li, Z., & Yan, Y., “Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics”, Energy & Environmental Science, 12(2), 442–462, 2019, https://doi.org/10.1039/C8EE01574K
  • [10] Androulakis, J., Katsarakis, N., Giapintzakis, J., Vouroutzis, N., Pavlidou, E., Chrissafis, K., Polychroniadis, E. K., & Perdikatsis, V., “LaSrMnCoO6: a new cubic double perovskite oxide”, Journal of Solid State Chemistry, 173(2), 350–354, 2023, https://doi.org/10.1016/S0022-4596(03)00109-9
  • [11] Cheng, X., Fabbri, E., Nachtegaal, M., Castelli, I. E., El Kazzi, M., Haumont, R., Marzari, N., & Schmidt, T. J., “Oxygen Evolution Reaction on La 1– x Sr x CoO 3 Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties”, Chemistry of Materials, 27(22), 7662–7672, 2015 https://doi.org/10.1021/acs.chemmater.5b03138
  • [12] Erdil, T., Lokcu, E., Yildiz, I., Okuyucu, C., Kalay, Y. E., & Toparli, C., “Facile Synthesis and Origin of Enhanced Electrochemical Oxygen Evolution Reaction Performance of 2H-Hexagonal Ba 2 CoMnO 6−δ as a New Member in Double Perovskite Oxides”, ACS Omega, 7(48), 44147–44155, 2022, https://doi.org/10.1021/acsomega.2c05627
  • [13] Mefford, J. T., Rong, X., Abakumov, A. M., Hardin, W. G., Dai, S., Kolpak, A. M., Johnston, K. P., & Stevenson, K. J., “Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts”, Nature Communications, 7(1), 11053, 2016, https://doi.org/10.1038/ncomms11053
  • [14] Jiang, S., Hu, T., Gild, J., Zhou, N., Nie, J., Qin, M., Harrington, T., Vecchio, K., & Luo, J., “A new class of high-entropy perovskite oxides”, Scripta Materialia, 142, 116–120, 2018, https://doi.org/10.1016/j.scriptamat.2017.08.040
  • [15] Bayraktar, D. O., Lökçü, E., Ozgur, C., Erdil, T., & Toparli, C., “Effect of synthesis environment on the electrochemical properties of (FeMnCrCoZn)(3)O-4 high‐entropy oxides for Li‐ion batteries”, International Journal of Energy Research, 46(15), 22124–22133, 2022, https://doi.org/10.1002/er.8749
  • [16] Wang, K., Ma, B., Li, T., Xie, C., Sun, Z., Liu, D., Liu, J., & An, L., “Fabrication of high-entropy perovskite oxide by reactive flash sintering”, Ceramics International, 46(11), 18358–18361, 2020, https://doi.org/10.1016/j.ceramint.2020.04.060
  • [17] Wu, H., Lu, Q., Li, Y., Wang, J., Li, Y., Jiang, R., Zhang, J., Zheng, X., Han, X., Zhao, N., Li, J., Deng, Y., & Hu, W., “Rapid Joule-Heating Synthesis for Manufacturing High-Entropy Oxides as Efficient Electrocatalysts”, Nano Letters, 22(16), 6492–6500, 2022, https://doi.org/10.1021/acs.nanolett.2c01147
  • [18] Dong, Q., Hong, M., Gao, J., Li, T., Cui, M., Li, S., Qiao, H., Brozena, A. H., Yao, Y., Wang, X., Chen, G., Luo, J., & Hu, L., “Rapid Synthesis of High‐Entropy Oxide Microparticles”, Small, 2104761, 2022, https://doi.org/10.1002/smll.202104761
  • [19] Mickevičius, S., Grebinskij, S., Bondarenka, V., Vengalis, B., Šliužienė, K., Orlowski, B. A., Osinniy, V., and Drube, W., “Investigation of epitaxial LaNiO3−x thin films by high-energy XPS”, Journal of Alloys and Compounds, 423(1–2), 107–111, 2006, https://doi.org/10.1016/j.jallcom.2005.12.038
  • [20] Wang, X. L., Jin, E. M., Sahoo, G., & Jeong, S. M., “High-Entropy Metal Oxide (NiMnCrCoFe)3O4 Anode Materials with Controlled Morphology for High-Performance Lithium-Ion Batteries”, Batteries, 9(3), 147, 2023, https://doi.org/10.3390/batteries9030147
  • [21] Alex, C., Sarma, S. Ch., Peter, S. C., & John, N. S., “Competing Effect of Co 3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co 3 O 4 Systems in Alkaline Medium”, ACS Applied Energy Materials, 3(6), 5439–5447, 2020 https://doi.org/10.1021/acsaem.0c00297
  • [22] Lökçü, E., Toparli, Ç., & Anik, M., “Electrochemical Performance of (MgCoNiZn) 1– x Li x O High-Entropy Oxides in Lithium-Ion Batteries”, ACS Applied Materials & Interfaces, 12(21), 23860–23866, 2020, https://doi.org/10.1021/acsami.0c03562
  • [23] Gupta, P., Bhargava, R., Das, R., & Poddar, P., “Static and dynamic magnetic properties and effect of surface chemistry on the morphology and crystallinity of DyCrO3 nanoplatelets”, RSC Advances, 3(48), 26427, 2013, https://doi.org/10.1039/c3ra43088j
  • [24] Suthar, M., Srivastava, A. K., Joshi, R. K., & Roy, P. K., “Nanocrystalline cerium-doped Y-type barium hexaferrite; a useful catalyst for selective oxidation of styrene”, Journal of Materials Science: Materials in Electronics, 31(19), 16793–16805, 2020, https://doi.org/10.1007/s10854-020-04234-5
  • [25] Radoń, A., Hawełek, Ł., Łukowiec, D., Kubacki, J., & Włodarczyk, P., “Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite”, Scientific Reports, 9(1), 20078, 2019, https://doi.org/10.1038/s41598-019-
Year 2023, Issue: 055, 124 - 131, 31.12.2023
https://doi.org/10.59313/jsr-a.1370632

Abstract

References

  • References:
  • [1] George, E. P., Raabe, D., and Ritchie, R. O., “High-entropy alloys”, Nature Reviews Materials, 4(8), 515–534, 2019, https://doi.org/10.1038/s41578-019-0121-4
  • [2] Kante, M. V., Weber, M. L., Ni, S., van den Bosch, I. C. G., van der Minne, E., Heymann, L., Falling, L. J., Gauquelin, N., Tsvetanova, M., Cunha, D. M., Koster, G., Gunkel, F., Nemšák, S., Hahn, H., Velasco Estrada, L., and Baeumer, C., “A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation, ACS”, Nano, 17(6), 5329–5339, 2023, https://doi.org/10.1021/acsnano.2c08096
  • [3] Rost, C. M., Sachet, E., Borman, T., Moballegh, A., Dickey, E. C., Hou, D., Jones, J. L., Curtarolo, S., and Maria, J.-P., “Entropy-stabilized oxides”, Nature Communications, 6(1), 8485, 2015. https://doi.org/10.1038/ncomms9485
  • [4] Okejiri, F., Zhang, Z., Liu, J., Liu, M., Yang, S., & Dai, S., “Room‐Temperature Synthesis of High‐Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication‐Based Method”, ChemSusChem, 13(1), 111–115, 2020, https://doi.org/10.1002/cssc.201902705
  • [5] Liu, Z., Tang, Z., Song, Y., Yang, G., Qian, W., Yang, M., Zhu, Y., Ran, R., Wang, W., Zhou, W., & Shao, Z., “High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells”, Nano-Micro Letters, 14(1), 217, 2022 https://doi.org/10.1007/s40820-022-00967-6
  • [6] Nguyen, T. X., Liao, Y., Lin, C., Su, Y., & Ting, J. (2021), “Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction”, Advanced Functional Materials, 31(27), 2101632, 2021, https://doi.org/10.1002/adfm.202101632
  • [7] Wang, L., Hossain, M. D., Du, Y., & Chambers, S. A. (2022), “Exploring the potential of high entropy perovskite oxides as catalysts for water oxidation”, Nano Today, 47, 101697, 2022 https://doi.org/10.1016/j.nantod.2022.101697
  • [8] Xu, X., Zhong, Y., & Shao, Z., “Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis”, Trends in Chemistry, 1(4), 410–424., 2019, https://doi.org/10.1016/j.trechm.2019.05.006
  • [9] Yin, W.-J., Weng, B., Ge, J., Sun, Q., Li, Z., & Yan, Y., “Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics”, Energy & Environmental Science, 12(2), 442–462, 2019, https://doi.org/10.1039/C8EE01574K
  • [10] Androulakis, J., Katsarakis, N., Giapintzakis, J., Vouroutzis, N., Pavlidou, E., Chrissafis, K., Polychroniadis, E. K., & Perdikatsis, V., “LaSrMnCoO6: a new cubic double perovskite oxide”, Journal of Solid State Chemistry, 173(2), 350–354, 2023, https://doi.org/10.1016/S0022-4596(03)00109-9
  • [11] Cheng, X., Fabbri, E., Nachtegaal, M., Castelli, I. E., El Kazzi, M., Haumont, R., Marzari, N., & Schmidt, T. J., “Oxygen Evolution Reaction on La 1– x Sr x CoO 3 Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties”, Chemistry of Materials, 27(22), 7662–7672, 2015 https://doi.org/10.1021/acs.chemmater.5b03138
  • [12] Erdil, T., Lokcu, E., Yildiz, I., Okuyucu, C., Kalay, Y. E., & Toparli, C., “Facile Synthesis and Origin of Enhanced Electrochemical Oxygen Evolution Reaction Performance of 2H-Hexagonal Ba 2 CoMnO 6−δ as a New Member in Double Perovskite Oxides”, ACS Omega, 7(48), 44147–44155, 2022, https://doi.org/10.1021/acsomega.2c05627
  • [13] Mefford, J. T., Rong, X., Abakumov, A. M., Hardin, W. G., Dai, S., Kolpak, A. M., Johnston, K. P., & Stevenson, K. J., “Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts”, Nature Communications, 7(1), 11053, 2016, https://doi.org/10.1038/ncomms11053
  • [14] Jiang, S., Hu, T., Gild, J., Zhou, N., Nie, J., Qin, M., Harrington, T., Vecchio, K., & Luo, J., “A new class of high-entropy perovskite oxides”, Scripta Materialia, 142, 116–120, 2018, https://doi.org/10.1016/j.scriptamat.2017.08.040
  • [15] Bayraktar, D. O., Lökçü, E., Ozgur, C., Erdil, T., & Toparli, C., “Effect of synthesis environment on the electrochemical properties of (FeMnCrCoZn)(3)O-4 high‐entropy oxides for Li‐ion batteries”, International Journal of Energy Research, 46(15), 22124–22133, 2022, https://doi.org/10.1002/er.8749
  • [16] Wang, K., Ma, B., Li, T., Xie, C., Sun, Z., Liu, D., Liu, J., & An, L., “Fabrication of high-entropy perovskite oxide by reactive flash sintering”, Ceramics International, 46(11), 18358–18361, 2020, https://doi.org/10.1016/j.ceramint.2020.04.060
  • [17] Wu, H., Lu, Q., Li, Y., Wang, J., Li, Y., Jiang, R., Zhang, J., Zheng, X., Han, X., Zhao, N., Li, J., Deng, Y., & Hu, W., “Rapid Joule-Heating Synthesis for Manufacturing High-Entropy Oxides as Efficient Electrocatalysts”, Nano Letters, 22(16), 6492–6500, 2022, https://doi.org/10.1021/acs.nanolett.2c01147
  • [18] Dong, Q., Hong, M., Gao, J., Li, T., Cui, M., Li, S., Qiao, H., Brozena, A. H., Yao, Y., Wang, X., Chen, G., Luo, J., & Hu, L., “Rapid Synthesis of High‐Entropy Oxide Microparticles”, Small, 2104761, 2022, https://doi.org/10.1002/smll.202104761
  • [19] Mickevičius, S., Grebinskij, S., Bondarenka, V., Vengalis, B., Šliužienė, K., Orlowski, B. A., Osinniy, V., and Drube, W., “Investigation of epitaxial LaNiO3−x thin films by high-energy XPS”, Journal of Alloys and Compounds, 423(1–2), 107–111, 2006, https://doi.org/10.1016/j.jallcom.2005.12.038
  • [20] Wang, X. L., Jin, E. M., Sahoo, G., & Jeong, S. M., “High-Entropy Metal Oxide (NiMnCrCoFe)3O4 Anode Materials with Controlled Morphology for High-Performance Lithium-Ion Batteries”, Batteries, 9(3), 147, 2023, https://doi.org/10.3390/batteries9030147
  • [21] Alex, C., Sarma, S. Ch., Peter, S. C., & John, N. S., “Competing Effect of Co 3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co 3 O 4 Systems in Alkaline Medium”, ACS Applied Energy Materials, 3(6), 5439–5447, 2020 https://doi.org/10.1021/acsaem.0c00297
  • [22] Lökçü, E., Toparli, Ç., & Anik, M., “Electrochemical Performance of (MgCoNiZn) 1– x Li x O High-Entropy Oxides in Lithium-Ion Batteries”, ACS Applied Materials & Interfaces, 12(21), 23860–23866, 2020, https://doi.org/10.1021/acsami.0c03562
  • [23] Gupta, P., Bhargava, R., Das, R., & Poddar, P., “Static and dynamic magnetic properties and effect of surface chemistry on the morphology and crystallinity of DyCrO3 nanoplatelets”, RSC Advances, 3(48), 26427, 2013, https://doi.org/10.1039/c3ra43088j
  • [24] Suthar, M., Srivastava, A. K., Joshi, R. K., & Roy, P. K., “Nanocrystalline cerium-doped Y-type barium hexaferrite; a useful catalyst for selective oxidation of styrene”, Journal of Materials Science: Materials in Electronics, 31(19), 16793–16805, 2020, https://doi.org/10.1007/s10854-020-04234-5
  • [25] Radoń, A., Hawełek, Ł., Łukowiec, D., Kubacki, J., & Włodarczyk, P., “Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite”, Scientific Reports, 9(1), 20078, 2019, https://doi.org/10.1038/s41598-019-
There are 26 citations in total.

Details

Primary Language English
Subjects General Physics, Material Physics, Surface Physics, Energy
Journal Section Research Articles
Authors

İlker Yıldız 0000-0001-5761-655X

Publication Date December 31, 2023
Submission Date October 3, 2023
Published in Issue Year 2023 Issue: 055

Cite

IEEE İ. Yıldız, “Synthesis and characterization of b-site controlled la-based high entropy perovskite oxides”, JSR-A, no. 055, pp. 124–131, December 2023, doi: 10.59313/jsr-a.1370632.