Research Article
BibTex RIS Cite

Numerical Analysis for Investigation of Hydraulic Fracturing Potential of the Rockfill Dam

Year 2023, Issue: 055, 173 - 184, 31.12.2023
https://doi.org/10.59313/jsr-a.1381469

Abstract

Embankment dams may collapse because of internal erosion that develops in the crack developed in the upstream-downstream direction by hydraulic fracturing. It is known in the literature that many dams collapsed due to hydraulic fracturing. The hydraulic fracturing mechanism is defined as the propagation of an existing crack on the upstream face of the clay core under hydrostatic stresses or the formation of a new crack in low-stress zones by hydrostatic stress. The variety of materials and materials' mechanical properties generally affect the hydraulic fracturing potential. This study examined the effect of the deformation parameters (Elasticity modulus and Poisson ratio) of the impermeable curtain-function clay core material on the hydraulic fracturing potential. Normal Stress and Mohr-Coulomb methods were used to determine the hydraulic fracturing potential. The principal stress values required for these two methods were determined for the maximum cross-section of the clay-core rockfill type Çınarcık Dam by the finite element method. While the hydraulic fracturing potential is negligibly affected by the change of deformation parameters in the Normal Stress method, this effect is clearly seen in the Mohr-Coulomb method.

References

  • [1] URL-1, United States Geological Survey, (USGS). (2019). Access site: https://www.usgs.gov/mission-areas/water-resources/science/hydraulic-fracturing#:~:text=Hydraulic%20fracturing%20(informally%20known%20as,bedrock%20formation%20via%20a%20well.
  • [2] Topçu, S. (2017). Kil çekirdekli kaya dolgu barajlarda hidrolik çatlama potansiyelinin tahmin edilmesi. DSİ Teknik Bülten, 125, 1-7. https://dsiteknikbulteni.dsi.gov.tr/.
  • [3] Jaworski, G.W, Duncan, J.M, Seed, H.B. (1981). Laboratory study of hydraulic fracturing. Journal of the Geotechnical Engineering Division, 107(6): 713–732.
  • [4] Sherard, J.L. (1973). Embankment dam cracking. In: Embankment-Dam Engineering (Casagrande Volume), (Hirschfeld RC and Poulos SJ, ed.), pp. 324–328. John Wiley, New York.
  • [5] Fell, R., Foster, M., Davidson, R., Cyganiewicz, J., Sills, G., Vroman, N. (2008). A Unified method for estimating probabilities of failure of embankment dams by internal erosion and piping. UNICIV Report R 446, 10–8. Sydney, Australia: The University of New South Wales, Sydney.
  • [6] U.S. Bureau of Reclamation, (USBR). (2019). Internal erosion risks for embankments and foundations, Technical Report IV-4. Denver, CO: U.S. Bureau of Reclamation. https://www.usbr.gov/damsafety/risk/BestPractices/Chapters/D6-InternalErosionRisksForEmbankmentsAndFoundationsWithAppendices.pdf.
  • [7] Lo, K. Y., Kaniaru, K. (1990). Hydraulic fracture in earth and rock-fill dams. Canadian Geotechnical Journal 27: 496- 506. https://doi.org/10.1139/t90-064.
  • [8] Rezaei, M. M., Salehi, B. (2011). The Effect of changing the geometry and compaction degree on arching of earth Dams. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp. 3207- 3216).
  • [9] Bui, H., Fell, R., Song, C. (2004). Two and three dimensional numerical modeling of the potential for cracking of embankment dams during construction. Sydney, Australia. https://vm.civeng.unsw.edu.au/uniciv/R-426.pdf.
  • [10] He, K., Song, C., Fell, R. (2014). Assessing potential cracking zones in embankment dams, in ST Smith (ed.), 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), vol. II, Byron Bay, NSW, 9-12 December, Southern Cross University, Lismore, NSW, 721–726.
  • [11] Narita, K. (2000). Design and construction of embankment dams. Department of Civil Engineering, Aichi Institute of Technology. https://aitech.ac.jp/~narita/tembankmentdam1.pdf.
  • [12] Tosun, H., Topçu, S. (2014). Toprak dolgu barajlarda hidrolik çatlama. Uluslararası Katılımlı IV. Ulusal Baraj Güvenliği Sempozyumu, Elazığ, Türkiye, s.519-530.
  • [13] Vaughan, P. R. (1971). The use of hydraulic fracture tests to detect crack formation in embankment dam cores. Interim Report, Department of Civil Engineering, Imperial College.
  • [14] Mori, A., Tamura, M. (1987). Hydrofracturing pressure of cohesive soils. Soils and Foundations, 27 (1): 14–22. https://doi.org/10.3208/sandf1972.27.14.
  • [15] Yanagisawa, E., Panah, A.K. (1994). Two dimensional study of hydraulic fracturing criteria in cohesive soils. Soils and Foundations,34: 1–9. https://doi.org/10.3208/sandf1972.34.1.
  • [16] Torblaa, I., Kjoernsli, B. (1968). Leakage through horizontal cracks in the core of Hyttejuvet Dam. Norwegian Geotechnical Institute Publication, pp 39-47.
  • [17] Nobari, E., Lee, K. L., Duncan J. M. (1973). Hydraulic fracturing in zoned earth and rockfill dams, A Report of an Investigation, DTIC Document. https://erdc-library.erdc.dren.mil/jspui/handle/11681/20528.
  • [18] Nishimura, S., Shimizu, H. (2004). A study of the measurement of fracture toughness in cohesive soil —relationship between the size of initial crack and diameter of specimen. Paddy and Water Environment, 2: 27–32. https://doi.org/10.1007/s10333-004-0036-5.
  • [19] Nishimura, S. (2005). Occurrence of extensile cracks in cohesive soils due to compression. Soils and Foundations, 45: 1–8. https://doi.org/10.3208/sandf.45.3_1.
  • [20] Wang, J. J., Zhu J. G., Chiu, C. F., Chai, H. J. (2007). Experimental study on fracture behavior of a silty clay. Geotechnical Testing Journal, 30: 303–311. DOI: 10.1520/GTJ100715.
  • [21] Wang, J. J., Zhang, H. P., Zhao, M. J., Lin, X. (2009). Mechanisms of hydraulic fracturing in cohesive soil. Water Science and Engineering, 2: 95–102. https://doi.org/10.3882/j.issn.1674-2370.2009.04.009.
  • [22] Wang, J. J, Liu, Y. X. (2010). Hydraulic fracturing in a cubic soil specimen. Soil Mechanics and Foundation Engineering, 47: 136–142. https://doi.org/10.1007/s11204-010-9101-9.
  • [23] Tran, D. Q., Nishimura, S., Senge, M., Nishiyama, T. (2020). Risk of embankment dam failure from viewpoint of hydraulic fracturing: Statistics, mechanism, and measures. Reviews in Agricultural Science, 8, 216-229. https://doi.org/10.7831/ras.8.0_216.
  • [24] Wang, J. J. (2014). Hydraulic fracturing in earth-rock fill dams. John Wiley & Sons.
  • [25] Ghanbari, A.,Rad, S.S. (2015). Development of an Empirical Criterion for Predicting the Hydraulic Fracturing in the Core of Earth Dams. Acta Geotechnica,10(2): 243–254. https://doi.org/10.1007/s11440-013-0263-2.
  • [26] Panah, A. K., Yanagisawa, E. (1989). Laboratory studies on hydraulic fracturing criteria in soil. Soils and Foundations 29(4): 14–22. https://doi.org/10.3208/sandf1972.29.4_14.
  • [27] Murdoch, L. C. (1993). Hydraulic fracturing of soil during laboratory experiments, part 1 methods and observations. Geotechnique 43(2): 255–266. https://doi.org/10.1680/geot.1993.43.2.255.
  • [28] Liu, Z., Wang, C. (2016). The analysis of stress, deformation and arch effect of the Lianghekou earth-rockfill dam. Indian Geotech J 46(1):77–84. https://doi.org/10.1007/s40098-015-0154-6.
  • [29] Talukdar, P., Dey, A. (2021). Finite element analysis for identifying locations of cracking and hydraulic fracturing in homogeneous earthen dams. International Journal of Geo-Engineering, 12(1), 1-26. https://doi.org/10.1186/s40703-020-00139-8.
  • [30] Tran, D. Q., Nishimura, S., Senge, M., Nishiyama, T. (2018). Research on cause of dam failure from viewpoint of hydraulic fracturing–case study of a dam failure in Vietnam. GEOMATE Journal, 14(41), 86-94.
  • [31] Razavi, S. K., Hajialilue Bonab, M., Dabaghian, A. (2020). Investigation into the internal erosion and local settlement of Esfarayen Earth-Fill Dam. Journal of geotechnical and geoenvironmental engineering, 146(4), 04020006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002216.
  • [32] Salari, M., Akhtarpour, A., Ekramifard, A. (2021). Hydraulic fracturing: a main cause of initiating internal erosion in a high earth-rock fill dam. International Journal of Geotechnical Engineering, 15(2), 207-219. https://doi.org/10.1080/19386362.2018.1500122.
  • [33] United States of Burea of Reclamation, USBR. (2011). Design standard no. 13. Embankment dams, protective filters. U.S. Department of Interior Bureau of Reclamation, p.1-191. https://www.usbr.gov/tsc/techreferences/designstandards-datacollectionguides/finalds-pdfs/DS13-5.pdf.
Year 2023, Issue: 055, 173 - 184, 31.12.2023
https://doi.org/10.59313/jsr-a.1381469

Abstract

References

  • [1] URL-1, United States Geological Survey, (USGS). (2019). Access site: https://www.usgs.gov/mission-areas/water-resources/science/hydraulic-fracturing#:~:text=Hydraulic%20fracturing%20(informally%20known%20as,bedrock%20formation%20via%20a%20well.
  • [2] Topçu, S. (2017). Kil çekirdekli kaya dolgu barajlarda hidrolik çatlama potansiyelinin tahmin edilmesi. DSİ Teknik Bülten, 125, 1-7. https://dsiteknikbulteni.dsi.gov.tr/.
  • [3] Jaworski, G.W, Duncan, J.M, Seed, H.B. (1981). Laboratory study of hydraulic fracturing. Journal of the Geotechnical Engineering Division, 107(6): 713–732.
  • [4] Sherard, J.L. (1973). Embankment dam cracking. In: Embankment-Dam Engineering (Casagrande Volume), (Hirschfeld RC and Poulos SJ, ed.), pp. 324–328. John Wiley, New York.
  • [5] Fell, R., Foster, M., Davidson, R., Cyganiewicz, J., Sills, G., Vroman, N. (2008). A Unified method for estimating probabilities of failure of embankment dams by internal erosion and piping. UNICIV Report R 446, 10–8. Sydney, Australia: The University of New South Wales, Sydney.
  • [6] U.S. Bureau of Reclamation, (USBR). (2019). Internal erosion risks for embankments and foundations, Technical Report IV-4. Denver, CO: U.S. Bureau of Reclamation. https://www.usbr.gov/damsafety/risk/BestPractices/Chapters/D6-InternalErosionRisksForEmbankmentsAndFoundationsWithAppendices.pdf.
  • [7] Lo, K. Y., Kaniaru, K. (1990). Hydraulic fracture in earth and rock-fill dams. Canadian Geotechnical Journal 27: 496- 506. https://doi.org/10.1139/t90-064.
  • [8] Rezaei, M. M., Salehi, B. (2011). The Effect of changing the geometry and compaction degree on arching of earth Dams. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp. 3207- 3216).
  • [9] Bui, H., Fell, R., Song, C. (2004). Two and three dimensional numerical modeling of the potential for cracking of embankment dams during construction. Sydney, Australia. https://vm.civeng.unsw.edu.au/uniciv/R-426.pdf.
  • [10] He, K., Song, C., Fell, R. (2014). Assessing potential cracking zones in embankment dams, in ST Smith (ed.), 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), vol. II, Byron Bay, NSW, 9-12 December, Southern Cross University, Lismore, NSW, 721–726.
  • [11] Narita, K. (2000). Design and construction of embankment dams. Department of Civil Engineering, Aichi Institute of Technology. https://aitech.ac.jp/~narita/tembankmentdam1.pdf.
  • [12] Tosun, H., Topçu, S. (2014). Toprak dolgu barajlarda hidrolik çatlama. Uluslararası Katılımlı IV. Ulusal Baraj Güvenliği Sempozyumu, Elazığ, Türkiye, s.519-530.
  • [13] Vaughan, P. R. (1971). The use of hydraulic fracture tests to detect crack formation in embankment dam cores. Interim Report, Department of Civil Engineering, Imperial College.
  • [14] Mori, A., Tamura, M. (1987). Hydrofracturing pressure of cohesive soils. Soils and Foundations, 27 (1): 14–22. https://doi.org/10.3208/sandf1972.27.14.
  • [15] Yanagisawa, E., Panah, A.K. (1994). Two dimensional study of hydraulic fracturing criteria in cohesive soils. Soils and Foundations,34: 1–9. https://doi.org/10.3208/sandf1972.34.1.
  • [16] Torblaa, I., Kjoernsli, B. (1968). Leakage through horizontal cracks in the core of Hyttejuvet Dam. Norwegian Geotechnical Institute Publication, pp 39-47.
  • [17] Nobari, E., Lee, K. L., Duncan J. M. (1973). Hydraulic fracturing in zoned earth and rockfill dams, A Report of an Investigation, DTIC Document. https://erdc-library.erdc.dren.mil/jspui/handle/11681/20528.
  • [18] Nishimura, S., Shimizu, H. (2004). A study of the measurement of fracture toughness in cohesive soil —relationship between the size of initial crack and diameter of specimen. Paddy and Water Environment, 2: 27–32. https://doi.org/10.1007/s10333-004-0036-5.
  • [19] Nishimura, S. (2005). Occurrence of extensile cracks in cohesive soils due to compression. Soils and Foundations, 45: 1–8. https://doi.org/10.3208/sandf.45.3_1.
  • [20] Wang, J. J., Zhu J. G., Chiu, C. F., Chai, H. J. (2007). Experimental study on fracture behavior of a silty clay. Geotechnical Testing Journal, 30: 303–311. DOI: 10.1520/GTJ100715.
  • [21] Wang, J. J., Zhang, H. P., Zhao, M. J., Lin, X. (2009). Mechanisms of hydraulic fracturing in cohesive soil. Water Science and Engineering, 2: 95–102. https://doi.org/10.3882/j.issn.1674-2370.2009.04.009.
  • [22] Wang, J. J, Liu, Y. X. (2010). Hydraulic fracturing in a cubic soil specimen. Soil Mechanics and Foundation Engineering, 47: 136–142. https://doi.org/10.1007/s11204-010-9101-9.
  • [23] Tran, D. Q., Nishimura, S., Senge, M., Nishiyama, T. (2020). Risk of embankment dam failure from viewpoint of hydraulic fracturing: Statistics, mechanism, and measures. Reviews in Agricultural Science, 8, 216-229. https://doi.org/10.7831/ras.8.0_216.
  • [24] Wang, J. J. (2014). Hydraulic fracturing in earth-rock fill dams. John Wiley & Sons.
  • [25] Ghanbari, A.,Rad, S.S. (2015). Development of an Empirical Criterion for Predicting the Hydraulic Fracturing in the Core of Earth Dams. Acta Geotechnica,10(2): 243–254. https://doi.org/10.1007/s11440-013-0263-2.
  • [26] Panah, A. K., Yanagisawa, E. (1989). Laboratory studies on hydraulic fracturing criteria in soil. Soils and Foundations 29(4): 14–22. https://doi.org/10.3208/sandf1972.29.4_14.
  • [27] Murdoch, L. C. (1993). Hydraulic fracturing of soil during laboratory experiments, part 1 methods and observations. Geotechnique 43(2): 255–266. https://doi.org/10.1680/geot.1993.43.2.255.
  • [28] Liu, Z., Wang, C. (2016). The analysis of stress, deformation and arch effect of the Lianghekou earth-rockfill dam. Indian Geotech J 46(1):77–84. https://doi.org/10.1007/s40098-015-0154-6.
  • [29] Talukdar, P., Dey, A. (2021). Finite element analysis for identifying locations of cracking and hydraulic fracturing in homogeneous earthen dams. International Journal of Geo-Engineering, 12(1), 1-26. https://doi.org/10.1186/s40703-020-00139-8.
  • [30] Tran, D. Q., Nishimura, S., Senge, M., Nishiyama, T. (2018). Research on cause of dam failure from viewpoint of hydraulic fracturing–case study of a dam failure in Vietnam. GEOMATE Journal, 14(41), 86-94.
  • [31] Razavi, S. K., Hajialilue Bonab, M., Dabaghian, A. (2020). Investigation into the internal erosion and local settlement of Esfarayen Earth-Fill Dam. Journal of geotechnical and geoenvironmental engineering, 146(4), 04020006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002216.
  • [32] Salari, M., Akhtarpour, A., Ekramifard, A. (2021). Hydraulic fracturing: a main cause of initiating internal erosion in a high earth-rock fill dam. International Journal of Geotechnical Engineering, 15(2), 207-219. https://doi.org/10.1080/19386362.2018.1500122.
  • [33] United States of Burea of Reclamation, USBR. (2011). Design standard no. 13. Embankment dams, protective filters. U.S. Department of Interior Bureau of Reclamation, p.1-191. https://www.usbr.gov/tsc/techreferences/designstandards-datacollectionguides/finalds-pdfs/DS13-5.pdf.
There are 33 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering, Numerical Modelization in Civil Engineering
Journal Section Research Articles
Authors

Sadettin Topçu 0000-0003-1306-2502

Evren Seyrek 0000-0003-4373-6723

Publication Date December 31, 2023
Submission Date October 26, 2023
Acceptance Date November 15, 2023
Published in Issue Year 2023 Issue: 055

Cite

IEEE S. Topçu and E. Seyrek, “Numerical Analysis for Investigation of Hydraulic Fracturing Potential of the Rockfill Dam”, JSR-A, no. 055, pp. 173–184, December 2023, doi: 10.59313/jsr-a.1381469.