Research Article
BibTex RIS Cite

Synthesis and characterization of polymer-derived nanocrystal SiOC powders via high temperature XRD method

Year 2023, Issue: 055, 161 - 172, 31.12.2023
https://doi.org/10.59313/jsr-a.1399368

Abstract

In the study, polymer-derived SiOC powders was synthesized by sol-gel method. The resulting composites consists of β-SiO2, SiC and free carbon. Tetraethylorthosilicate (TEOS) and Polydimethylsiloxane (PDMS) were selected as starting materials to obtain organic-inorganic structure. After the gelling process, the powders were heat treated at 1100°C in Argon medium to obtain the desired phases. Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA) and Fourier Transform Infrared Spectroscopy (FT-IR) analyses were used for characterization. In addition, instant phase changes were determined by high-temperature XRD in powders subjected to heat treatment up to 1500 °C in a helium environment. The effect of temperatures on the transformation in SiOC synthesis, the transformation temperatures of α-cristobalite to β-cristobalite were sharply determined and the SiC formation temperature was revealed. The effect of temperature on crystal size was also obtained as a result of the study.

Thanks

This study is derived from the author's master's thesis on the Synthesis and Characterization of Polymer Derived Nanocrystalline SiOC Powders. We would like to thank Kütahya Dumlupınar University Advanced Technologies Center and analysis supervisors for their great help in carrying out the analyses used in experimental studies.

References

  • [1] L, Jiıngjie., D, Qingwen., Y, C., Giuntini, D., & R. Riedel., (2023). Preparation of polymer-derived SiOC-Cu ceramic composites and their tribological performance, Journal of the European Ceramic Society, (in-press article).
  • [2] Y. J. Shim., S. H. Joo., H. J. Lee., K. W. Cho., & Y. J. Joo., (2023). The effect of temperature and atmospheric-pressure on mechanical and electrical properties of polymer-derived SiC fibers. Oper Ceramics, 15, 100431.
  • [3] G. J. Leonel., X. Guo., G. Singh., & A. Navrotsky., (2023). Chemistry, structure and thermodynamic stabilization of SiOC polymer derived ceramics made from commercial precursor. Open Ceramics, 15, 100402.
  • [4] K. Liu., W. Peng., D. Han., Y. Liang., B. Fan., H. Lu., H. Wang., H. Xu., R. Zhang., & G. Shao., (2023) Enhanced piezoresistivity of polymer-derived SiCN ceramics by regulating divinilybenzene-induced free carbon. Ceramics International, 49, 2296-2301.
  • [5] Y. Liu., K. Chen., F. Dong., S. Peng., Y. Cui., C. Zhang., K. Han., M. Yu., & H. Zhang., (2018). Effects of hydrolis of precursor on the structure and properties of polymer-derived SiBN ceramic fibers. Ceramics International, 44, 10199-10203.
  • [6] Z, C., X, Chen., X, Li., & G, S., (2023). Thin-film temperature sensor made from polymer-derived ceramics based on laser pyrolis. Sensors and Actuators: A. Physical, 350, 114144.
  • [7] Q, Yan., S, Chen., H, Shi., X, Wang., S, Meng., & J, Li., (2023). Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance. Journal of the European Ceramic Society, 43, 7373-7380.
  • [8] X, Zhang., y, Zhang., L, Gou., B, Liu., Y, Wang., H, Li., H, Li., & J, Sun., (2024). Ablation resistance of ZrC coating modified by polymer-derived SiHfOC ceramic microspheres at ultrahigh temperature. Journal of Materials Science & Technology, 182, 119-131.
  • [9] Z, Li., & Y, Wang., (2017). Preparation of polymer-derived graphene-like carbon-silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications. Journal of Alloys and Compounds, 709, 313-321.
  • [10] Y, Lu., Y, Sun., T, Zhang., F, Chen., L, Ye., & T, Zhao., (2019). Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: Synthesis, microstructure and properties. Journal of the European Ceramic Society, 39, 205-211.
  • [11] M. A. Mazo, A. Nistal, A.C. Caballero, F. Rubio, J. Rubio, J.L. Oteo, (2013), Influence of processing conditions in TEOS/PDMS derived silicon oxycarbide materials. Part 1: Microstructure and properties Journal of the European Ceramic Society33,1195-1205.
  • [12] A. Klonczynski, R. Riedel, G. Mera and R. Hauser, (2006), '' Silicon-Based Polymer-Derived Ceramics: Synthesis Properties and Applications-A Review, Journal of the Ceramic Society of Japan 114 (6), 425-444.
  • [13] P. Colombo, (2010), '' Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics' ', Journal of American Ceramic Society, 93 (7), 1805-1837
  • [14] E. Bernardo, L. Fiocco, G. Parcianello, E. Storti, P. Colombo, (2014), ''Advanced Ceramics from Preceramic Plymers Modified at the Nanoscale: A Review'' Materials, 7, 1927-1956
  • [15] H. Zhang, C. G. Pantano, A. K. Singh, (1999), Silicon Oxycarbide Glasses, Journal of Sol-Gel Science and Technology, 14, 7-25
  • [16] Porte, L. & Sarte, A. (1989), Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fibre: Journal of Materials Science cilt 24 s.271–275.
  • [17] F. Babonneau, L. Bois and J. Livage, (1992), Silicon oxycarbides via sol-gel route: characterization of the pyrolysis process Journal of Non-Crystalline Solids 147-148, 280-284
  • [18] F. K. Chi, (1983) '' Carbon-Containing Monolithic Glasses via the Sol-Gel Process' 'Ceram. Eng. Sci. Proc. 4, 704-717
  • [19] J. Rumble, (Ed.). (2017). CRC handbook of chemistry and physics.
  • [20] Y-L. Li, D. Su, H-J. An, X. Liu, F. Hou, J-Y. Li, X. Fu, (2010), Pyrolytic transformation of liquid precursors to shaped bulk ceramics, Journal of European Ceramic Society, 30, 1503-1511
  • [21] X. Wang, J. Qian, C. He, A. Shui, B. Du, (2023), The sutructural evolutions and enhanced thermal stability of Al cation-modified silicon oxycarbide ceramics, Journal of Sol-Gel Science and Technology, 106, 616-625
  • [22] D-S. Ruan, Y-L. Li, L. Wang, D. Su, F. Hou, (2010), Fabrication of silicon oxycarbide fibers from alkoxide solutions along the sol-gel process, Journal of Sol-Gel Science and Technology, 56, 184-190
  • [23] H, Tang., K, Wang., K, Ren., & Y, Wang., (2023). Microstructural evolation and microwave transmission/absorption transition in polymer-derived SiOC ceramics. Ceramics International, 49, 20406-20418.
Year 2023, Issue: 055, 161 - 172, 31.12.2023
https://doi.org/10.59313/jsr-a.1399368

Abstract

References

  • [1] L, Jiıngjie., D, Qingwen., Y, C., Giuntini, D., & R. Riedel., (2023). Preparation of polymer-derived SiOC-Cu ceramic composites and their tribological performance, Journal of the European Ceramic Society, (in-press article).
  • [2] Y. J. Shim., S. H. Joo., H. J. Lee., K. W. Cho., & Y. J. Joo., (2023). The effect of temperature and atmospheric-pressure on mechanical and electrical properties of polymer-derived SiC fibers. Oper Ceramics, 15, 100431.
  • [3] G. J. Leonel., X. Guo., G. Singh., & A. Navrotsky., (2023). Chemistry, structure and thermodynamic stabilization of SiOC polymer derived ceramics made from commercial precursor. Open Ceramics, 15, 100402.
  • [4] K. Liu., W. Peng., D. Han., Y. Liang., B. Fan., H. Lu., H. Wang., H. Xu., R. Zhang., & G. Shao., (2023) Enhanced piezoresistivity of polymer-derived SiCN ceramics by regulating divinilybenzene-induced free carbon. Ceramics International, 49, 2296-2301.
  • [5] Y. Liu., K. Chen., F. Dong., S. Peng., Y. Cui., C. Zhang., K. Han., M. Yu., & H. Zhang., (2018). Effects of hydrolis of precursor on the structure and properties of polymer-derived SiBN ceramic fibers. Ceramics International, 44, 10199-10203.
  • [6] Z, C., X, Chen., X, Li., & G, S., (2023). Thin-film temperature sensor made from polymer-derived ceramics based on laser pyrolis. Sensors and Actuators: A. Physical, 350, 114144.
  • [7] Q, Yan., S, Chen., H, Shi., X, Wang., S, Meng., & J, Li., (2023). Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance. Journal of the European Ceramic Society, 43, 7373-7380.
  • [8] X, Zhang., y, Zhang., L, Gou., B, Liu., Y, Wang., H, Li., H, Li., & J, Sun., (2024). Ablation resistance of ZrC coating modified by polymer-derived SiHfOC ceramic microspheres at ultrahigh temperature. Journal of Materials Science & Technology, 182, 119-131.
  • [9] Z, Li., & Y, Wang., (2017). Preparation of polymer-derived graphene-like carbon-silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications. Journal of Alloys and Compounds, 709, 313-321.
  • [10] Y, Lu., Y, Sun., T, Zhang., F, Chen., L, Ye., & T, Zhao., (2019). Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: Synthesis, microstructure and properties. Journal of the European Ceramic Society, 39, 205-211.
  • [11] M. A. Mazo, A. Nistal, A.C. Caballero, F. Rubio, J. Rubio, J.L. Oteo, (2013), Influence of processing conditions in TEOS/PDMS derived silicon oxycarbide materials. Part 1: Microstructure and properties Journal of the European Ceramic Society33,1195-1205.
  • [12] A. Klonczynski, R. Riedel, G. Mera and R. Hauser, (2006), '' Silicon-Based Polymer-Derived Ceramics: Synthesis Properties and Applications-A Review, Journal of the Ceramic Society of Japan 114 (6), 425-444.
  • [13] P. Colombo, (2010), '' Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics' ', Journal of American Ceramic Society, 93 (7), 1805-1837
  • [14] E. Bernardo, L. Fiocco, G. Parcianello, E. Storti, P. Colombo, (2014), ''Advanced Ceramics from Preceramic Plymers Modified at the Nanoscale: A Review'' Materials, 7, 1927-1956
  • [15] H. Zhang, C. G. Pantano, A. K. Singh, (1999), Silicon Oxycarbide Glasses, Journal of Sol-Gel Science and Technology, 14, 7-25
  • [16] Porte, L. & Sarte, A. (1989), Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fibre: Journal of Materials Science cilt 24 s.271–275.
  • [17] F. Babonneau, L. Bois and J. Livage, (1992), Silicon oxycarbides via sol-gel route: characterization of the pyrolysis process Journal of Non-Crystalline Solids 147-148, 280-284
  • [18] F. K. Chi, (1983) '' Carbon-Containing Monolithic Glasses via the Sol-Gel Process' 'Ceram. Eng. Sci. Proc. 4, 704-717
  • [19] J. Rumble, (Ed.). (2017). CRC handbook of chemistry and physics.
  • [20] Y-L. Li, D. Su, H-J. An, X. Liu, F. Hou, J-Y. Li, X. Fu, (2010), Pyrolytic transformation of liquid precursors to shaped bulk ceramics, Journal of European Ceramic Society, 30, 1503-1511
  • [21] X. Wang, J. Qian, C. He, A. Shui, B. Du, (2023), The sutructural evolutions and enhanced thermal stability of Al cation-modified silicon oxycarbide ceramics, Journal of Sol-Gel Science and Technology, 106, 616-625
  • [22] D-S. Ruan, Y-L. Li, L. Wang, D. Su, F. Hou, (2010), Fabrication of silicon oxycarbide fibers from alkoxide solutions along the sol-gel process, Journal of Sol-Gel Science and Technology, 56, 184-190
  • [23] H, Tang., K, Wang., K, Ren., & Y, Wang., (2023). Microstructural evolation and microwave transmission/absorption transition in polymer-derived SiOC ceramics. Ceramics International, 49, 20406-20418.
There are 23 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Sait Altun 0000-0003-3085-1351

Hasan Göçmez 0000-0003-3748-0311

Publication Date December 31, 2023
Submission Date December 2, 2023
Acceptance Date December 31, 2023
Published in Issue Year 2023 Issue: 055

Cite

IEEE S. Altun and H. Göçmez, “Synthesis and characterization of polymer-derived nanocrystal SiOC powders via high temperature XRD method”, JSR-A, no. 055, pp. 161–172, December 2023, doi: 10.59313/jsr-a.1399368.