Review
BibTex RIS Cite

AgNPların BUĞDAY TOHUMU ÇİMLENMESİNE ETKİLERİNİ BELİRLEYEN ÇALIŞMALARIN EPA ve OECD YÖNERGELERİNE GÖRE DEĞERLENDİRİLMESİ: SİSTEMATİK DERLEME

Year 2020, Volume: 23 Issue: 3, 176 - 187, 01.09.2020
https://doi.org/10.17780/ksujes.762091

Abstract

Gümüş nanoparçacıklar (AgNP'ler) benzersiz özellikleri nedeniyle, özellikle mikrobiyal aktivite nedeniyle birçok endüstride kullanılmaktadır. Bu yüzden bilimsel çalışmaların çoğu AgNP'lerin antimikrobiyal etkileri üzerine odaklanmıştır. Bununla birlikte, AgNP'lerin son on yılda bitkilerin, özellikle yaygın olarak yetiştirilen buğday bitkilerinin büyümesi üzerindeki etkileri hakkında bilgi eksikliği vardır. Bu sistematik derlemede, AgNP'lerin buğdayın tohum çimlenmesi üzerindeki etkilerini belirleyen seçilmiş çalışmaları incelemeye çalıştık. Bu araştırma 2009-2019 yılları arasında yayınlanan bilimsel araştırmalara odaklanmıştır. İnceleme süreci, PRISMA'ya göre 4 farklı veritabanında 3 anahtar kelime ve bunların 4 farklı kombinasyonu ile yürütülmüştür. 35453 tarama kaydı arasından seçim kriterlerine göre toplamda 7 makale elde edilmiştir. Seçilen 7 makale incelendiğinde, ticari olarak satin alınan veya kimyasal olarak sentezlenen AgNP'lerin buğdayın tohum çimlenmesi üzerinde yeşil sentezlenmiş AgNP'lere göre olumsuz etkilerinin olduğu belirlenmiştir.

References

  • Akter, M., Sikder, M.T., Rahman, M.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Saito, T., Kurasaki, M. (2018). A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Res., 9,1–16.
  • Amooaghaie, R., Saeri, M.R., & Azizi, M. (2015). Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotox and Environ Safety, 120,400–408.
  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302,1–17.
  • Carbone, K., Paliotta, M., Micheli, L., Mazzuca, C., Cacciotti, I., Nocente, F., Ciampa, A., & Dell’Abate, M.T. (2019). A completely green approach to the synthesis of dendritic silver nanostructures starting from White grape pomace as a potential nanofactory. Arabian Journal of Chemistry, 12,597–609.
  • Cheema, S.A., ur Rehman, H., Kiran, A., Bashir, K., & Wakeel, A. (2018). Progress and prospects for micronutrient biofortification in rice/wheat. In: M. A. Hossain, T. Kamiya, D.J. Burritt, L-S.P. Tran, T. Fujiwara (Eds). Plant micronutrient use efficiency, (pp 261-278). Academic Press, Elsevier.
  • Chen, Z., Cheng, Q., Hu, C., Guo, X., Chen, Z., Lin, Y., Hu, T., Bellizzi, M., Lu, G., Wang, G-L., Wang, Z., Chen, S., & Wang, F. (2017). A chemical-induced, seed-soaking activation procedure for regulated gene expression in rice. Front. Plant Sci., 8,1447.
  • Cheng, K.M., Hung, Y.W., Chen, C.C., Liu, C.C., & Young, J.J. (2014). Green synthesis of chondroitin sulfate-capped silver nanoparticles:Characterization and surface modification. Carbohydrate Polymers, 110,195–202.
  • Dalai, S., Pakrashi, S., Nirmala, M.J., Chaudhri, A., Chandrasekaran, N., Mandal, A.B., & Mukherjee, A. (2013). Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology, 138-139,1-11.
  • Doğaroğlu, Z.G. & Köleli, N. (2017). Effects of TiO2 and ZnO nanoparticles on germinating and antioxidant system in wheat. Applied Ecol and Enviro Res, 15(3),1499-1510.
  • Du, W., Yang, J., Peng, Q., Liang, X., & Mao, H. (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 227,109-116.
  • Galazzia, R.M., Júnior, C.A.L., de Lima, T.B., Gozzo, F.C., & Arruda, M.A.Z. (2019). Evaluation of some effects on plant metabolism through proteins and enzymes in transgenic and non-transgenic soybeans after cultivation with silver nanoparticles. J of Proteomics, 191,88–106.
  • Gorczyca, A., Pociecha, E., Kasprowicz, M., & Niemiec, M. (2015). Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur J Plant Pathol 142:251–261
  • Gorczyca, A., Przemieniecki, S.W., Kurowski, T., & Oćwieja, M. (2018). Early plant growth and bacterial community in rhizoplane of wheat and flax exposed to silver and titanium dioxide nanoparticles. Environ Sci and Poll Res, 25,33820–33826.
  • Jha, A.K. & Prasad, K. (2010). Green synthesis of silver nanoparticles using cycas leaf. Inter J of Green Nanotechnology: Physics and Chemistry, 1(2),110-117.
  • Kannaujia, R., Srivastava, C.M., Prasad, V., Singh, B.N., & Pandey, V. (2019). Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiology and Biochemistry, 142,460–471.
  • Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., & Schuster, E.W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot,. 35,64.
  • Kim, K.T., Klaine, S.J., Cho, J., Kim, S.H., Kim, & S.D. (2010). Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci of the Total Enviro, 408,2268-2272.
  • Kim, D.Y., Saratale, R.G., Shinde, S., Syed, A., Ameen, F., & Ghodake, G. (2018). Green synthesis of silver nanoparticles using Laminaria japonica extract: Characterization and seedling growth assessment. Journal of Cleaner Production, 172,2910-2918.
  • Kumar, A., Pandey, A.K., Singh, S.S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO2 nanoparticles induced oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine, 51,1872-1881.
  • Lee, W.M., Kwak, J.I., & An, Y.J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere, 86,491–499.
  • Li, R., He, J., Xie, H., Wang, W., Bose, S.K., Sun, Y., Hu, J., & Yin, H. (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J of Biol Macromolecules, 126,91–100.
  • Lin, D. & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150, 243-250.
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D.G. (2009). The PRISMA Group - Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.
  • Organization for Economic Cooperation and Development (OECD) (2006). Guidelines for the Testing of Chemicals - Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test.
  • Pardha-Saradhi, P., Shabnam, N., Sharmila, P., Ganguli, A.K., & Kim, H. (2018). Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver. Chemosphere, 194, 340-351.
  • Rashid, S., Azeem, M., Khan, S.A., Shah, M.M., & Ahmad, R. (2019). Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of Pakistan. Colloids and Surfaces B: Biointerfaces, 179, 317–325.
  • Singh, P., Kim, Y-J., Zhang, D., & Yang, D-C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34, 7.
  • Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., & Upadhyay, S.N. (2016). Green synthesis of silver nanoparticles: A Review. Green and Sustainable Chemistry, 6,34-56.
  • United States Environmental Protection Agency (US EPA) (1996). - OPPTS 850.4200 Seed Germination/Root Elongation Toxicity Test.
  • United States Environmental Protection Agency (US EPA) (2012a). - OCSPP 850.4000: Background and Special Considerations-Tests with Terrestrial and Aquatic Plants, Cyanobacteria, and Terrestrial Soil-Core Microcosms
  • United States Environmental Protection Agency (US EPA) (2012b). - OCSPP 850.4150: Vegetative Vigor
  • United States Environmental Protection Agency (US EPA) (2012c). - OCSPP 850.4100: Seedling Emergence and Seedling Growth
  • Vannini, C., Domingo, G., Onelli, E., De Mattia, F., Bruni, I., Marsoni, M., & Bracale, M. (2014). Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. Journal of Plant Physiology, 171,1142–1148.
  • Yang, J., Jiang, F., Ma, C., Rui, Y., Rui, M., Adeel, M., Cao, W., & Xing, B. (2018). Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J. Agric. Food Chem., 66, 2589−2597.

EVALUATION of STUDIES DETERMINING the EFFECTS of AgNPs on WHEAT SEED GERMINATION ACCORDING to EPA and OECD GUIDELINES:SYSTEMATIC REVIEW

Year 2020, Volume: 23 Issue: 3, 176 - 187, 01.09.2020
https://doi.org/10.17780/ksujes.762091

Abstract

Silver nanoparticles (AgNPs) are used in many industries due to their unique properties, especially on microbial activity. For that, most of the scientific studies are focused on the antimicrobial effects of AgNPs. However, there is a lack of information about the effects of AgNPs on the growth of plants, especially commonly cultivated wheat plants over the last decades. In this systematic review, we tried to examine the selected studies determining the effects of AgNPs on seed germination of wheat. This research was focused on scientific researches published from 2009 to 2019. The reviewing process has been conducted by 3 keywords and 4 combinations of them in 4 different databases according to PRISMA. Among the 35453 screening records, 7 articles were obtained according to the selection criteria. Obtained results from these 7 articles showed that commercially obtained or chemically synthesized AgNPs have adverse effects on seed germination of wheat than green synthesized AgNPs.

References

  • Akter, M., Sikder, M.T., Rahman, M.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Saito, T., Kurasaki, M. (2018). A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Res., 9,1–16.
  • Amooaghaie, R., Saeri, M.R., & Azizi, M. (2015). Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotox and Environ Safety, 120,400–408.
  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302,1–17.
  • Carbone, K., Paliotta, M., Micheli, L., Mazzuca, C., Cacciotti, I., Nocente, F., Ciampa, A., & Dell’Abate, M.T. (2019). A completely green approach to the synthesis of dendritic silver nanostructures starting from White grape pomace as a potential nanofactory. Arabian Journal of Chemistry, 12,597–609.
  • Cheema, S.A., ur Rehman, H., Kiran, A., Bashir, K., & Wakeel, A. (2018). Progress and prospects for micronutrient biofortification in rice/wheat. In: M. A. Hossain, T. Kamiya, D.J. Burritt, L-S.P. Tran, T. Fujiwara (Eds). Plant micronutrient use efficiency, (pp 261-278). Academic Press, Elsevier.
  • Chen, Z., Cheng, Q., Hu, C., Guo, X., Chen, Z., Lin, Y., Hu, T., Bellizzi, M., Lu, G., Wang, G-L., Wang, Z., Chen, S., & Wang, F. (2017). A chemical-induced, seed-soaking activation procedure for regulated gene expression in rice. Front. Plant Sci., 8,1447.
  • Cheng, K.M., Hung, Y.W., Chen, C.C., Liu, C.C., & Young, J.J. (2014). Green synthesis of chondroitin sulfate-capped silver nanoparticles:Characterization and surface modification. Carbohydrate Polymers, 110,195–202.
  • Dalai, S., Pakrashi, S., Nirmala, M.J., Chaudhri, A., Chandrasekaran, N., Mandal, A.B., & Mukherjee, A. (2013). Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology, 138-139,1-11.
  • Doğaroğlu, Z.G. & Köleli, N. (2017). Effects of TiO2 and ZnO nanoparticles on germinating and antioxidant system in wheat. Applied Ecol and Enviro Res, 15(3),1499-1510.
  • Du, W., Yang, J., Peng, Q., Liang, X., & Mao, H. (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 227,109-116.
  • Galazzia, R.M., Júnior, C.A.L., de Lima, T.B., Gozzo, F.C., & Arruda, M.A.Z. (2019). Evaluation of some effects on plant metabolism through proteins and enzymes in transgenic and non-transgenic soybeans after cultivation with silver nanoparticles. J of Proteomics, 191,88–106.
  • Gorczyca, A., Pociecha, E., Kasprowicz, M., & Niemiec, M. (2015). Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur J Plant Pathol 142:251–261
  • Gorczyca, A., Przemieniecki, S.W., Kurowski, T., & Oćwieja, M. (2018). Early plant growth and bacterial community in rhizoplane of wheat and flax exposed to silver and titanium dioxide nanoparticles. Environ Sci and Poll Res, 25,33820–33826.
  • Jha, A.K. & Prasad, K. (2010). Green synthesis of silver nanoparticles using cycas leaf. Inter J of Green Nanotechnology: Physics and Chemistry, 1(2),110-117.
  • Kannaujia, R., Srivastava, C.M., Prasad, V., Singh, B.N., & Pandey, V. (2019). Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiology and Biochemistry, 142,460–471.
  • Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., & Schuster, E.W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot,. 35,64.
  • Kim, K.T., Klaine, S.J., Cho, J., Kim, S.H., Kim, & S.D. (2010). Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci of the Total Enviro, 408,2268-2272.
  • Kim, D.Y., Saratale, R.G., Shinde, S., Syed, A., Ameen, F., & Ghodake, G. (2018). Green synthesis of silver nanoparticles using Laminaria japonica extract: Characterization and seedling growth assessment. Journal of Cleaner Production, 172,2910-2918.
  • Kumar, A., Pandey, A.K., Singh, S.S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO2 nanoparticles induced oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine, 51,1872-1881.
  • Lee, W.M., Kwak, J.I., & An, Y.J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere, 86,491–499.
  • Li, R., He, J., Xie, H., Wang, W., Bose, S.K., Sun, Y., Hu, J., & Yin, H. (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J of Biol Macromolecules, 126,91–100.
  • Lin, D. & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150, 243-250.
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D.G. (2009). The PRISMA Group - Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.
  • Organization for Economic Cooperation and Development (OECD) (2006). Guidelines for the Testing of Chemicals - Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test.
  • Pardha-Saradhi, P., Shabnam, N., Sharmila, P., Ganguli, A.K., & Kim, H. (2018). Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver. Chemosphere, 194, 340-351.
  • Rashid, S., Azeem, M., Khan, S.A., Shah, M.M., & Ahmad, R. (2019). Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of Pakistan. Colloids and Surfaces B: Biointerfaces, 179, 317–325.
  • Singh, P., Kim, Y-J., Zhang, D., & Yang, D-C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34, 7.
  • Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., & Upadhyay, S.N. (2016). Green synthesis of silver nanoparticles: A Review. Green and Sustainable Chemistry, 6,34-56.
  • United States Environmental Protection Agency (US EPA) (1996). - OPPTS 850.4200 Seed Germination/Root Elongation Toxicity Test.
  • United States Environmental Protection Agency (US EPA) (2012a). - OCSPP 850.4000: Background and Special Considerations-Tests with Terrestrial and Aquatic Plants, Cyanobacteria, and Terrestrial Soil-Core Microcosms
  • United States Environmental Protection Agency (US EPA) (2012b). - OCSPP 850.4150: Vegetative Vigor
  • United States Environmental Protection Agency (US EPA) (2012c). - OCSPP 850.4100: Seedling Emergence and Seedling Growth
  • Vannini, C., Domingo, G., Onelli, E., De Mattia, F., Bruni, I., Marsoni, M., & Bracale, M. (2014). Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. Journal of Plant Physiology, 171,1142–1148.
  • Yang, J., Jiang, F., Ma, C., Rui, Y., Rui, M., Adeel, M., Cao, W., & Xing, B. (2018). Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J. Agric. Food Chem., 66, 2589−2597.
There are 34 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Reviews
Authors

Zeynep Görkem Doğaroğlu 0000-0002-6566-5244

Melek Yeşil Bayülgen 0000-0002-8901-8375

Publication Date September 1, 2020
Submission Date July 1, 2020
Published in Issue Year 2020Volume: 23 Issue: 3

Cite

APA Doğaroğlu, Z. G., & Yeşil Bayülgen, M. (2020). EVALUATION of STUDIES DETERMINING the EFFECTS of AgNPs on WHEAT SEED GERMINATION ACCORDING to EPA and OECD GUIDELINES:SYSTEMATIC REVIEW. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(3), 176-187. https://doi.org/10.17780/ksujes.762091