Research Article
BibTex RIS Cite

Decreased gene expression of RIPK1 and RIPK3, necroptosis players, in calves with sepsis

Year 2023, Volume: 8 Issue: 2, 130 - 135, 31.08.2023
https://doi.org/10.24880/maeuvfd.1314627

Abstract

Background With the increase in the world population, the need for livestock-based nutrition is also increasing. In addition, the livestock sector becomes more important as it contributes to the economy However, sepsis has high morbidity and mortality rate in newborn calves and can cause severe economic losses. Therefore, new biomarkers to distinguish sepsis from other diseases are urgently needed in veterinary medicine. In the present study, we investigated for the first time the gene expression levels of necroptosis members, including RIPK1 and RIPK3, and one of the NF-kB activators RIPK2, in calves with sepsis.
Methods and results We examined the mRNA levels of RIPK1, RIPK3, and RIPK2 using qPCR in 10 healthy Holstein calves and 20 Holstein calves with sepsis due to suffering from enteritis infection between 1-20 days of age. The hematologic parameters, including leukocytes, erythrocytes, hemoglobin, hematocrit, and platelets, were evaluated in the calves included in this study. The results showed that calves with sepsis had prominently lower mRNA levels of RIPK1 and RIPK3 than those in healthy calves. Besides, RIPK2 mRNA expression was absent in healthy calves and calves with sepsis.
Conclusions In veterinary medicine decreased RIPK1 and RIPK3 mRNA levels might be biomarkers to diagnose sepsis in calves.

Supporting Institution

Burdur Mehmet Akif Ersoy University Scientific Research Projects Unit

Project Number

0522-YL-18

Thanks

This work was based on a Master of Science Thesis and supported by Burdur Mehmet Akif Ersoy University Scientific Research Projects Unit Under Project number 0522-YL-18.

References

  • 1. Angus, D., C., & Vander, P., T. (2013). Severe sepsis and septic shock. The New England Journal of Medicine, 369, 840-51.
  • 2. Aygun, O., & Yildiz, R. (2018). Evaluation of thrombomodulin and pentraxin-3 as diagnostic biomarkers in calves with sepsis. Veterinarni Medicina, 63, 313–20.
  • 3. Bullock, A., N., & Degterev, A. (2015). Targeting RIPK1,2,3 to combat inflammation. Oncotarget, 6(33), 34057-8. https://doi.org/10.18632/oncotarget.6106
  • 4. Chen, H., Li, Y., Wu, J., Li, G., Tao, X., Lai, K., Yuan, Y., Zhang, X., Zou, Z., & Xu, Y. (2020). RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differentiation, 27(9), 2568-2585. https://doi.org/10.1038/s41418-020-0524-1
  • 5. Cho, Y., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., & Chan, F. K. (2009). Phosphorylation-driven assembly of the RIPK1-RIPK3 complex regulates programmed necrosis and virus-induced inflammation, Cell, 137, 1112–23.
  • 6. Duprez, L., Takahashi, N., Van , H., F., Vandendriessche, B., Goossens, V., Vanden, B., T., Declercq, W., Libert, C., Cauwels, A., & Vandenabeele, P. (2011). RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity, 35(6), 908-18. https://doi.org/10.1016/j.immuni.2011.09.020
  • 7. Fecteau, G., Paré, J., Van Metre, D. C., Smith, B. P., Holmberg, C. A., Guterbock, W., & Jang, S. (1997). Use of a clinical sepsis score for predicting bacteremia in neonatal dairy calves on a calf rearing farm. The Canadian Veterinary Journal, 38(2), 101-104.
  • 8. Fecteau, G., Smith, B., P., & George, L., W. (2009). Septicemia and meningitis in the newborn calf. Veterinary Clinics of North America: Food Animal Practice, 25(1), 195-208.
  • 9. Geserick, P., Wang, J., Schilling, R., Horn, S., Harris, P., A., Bertin, J., Gough, P. J., Feoktistova, M., & Leverkus, M. (2015). Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death & Disease 6(9), e1884. https://doi.org/10.1038/cddis.2015.240
  • 10. Guzelbektes, H., Sen I., Aydogdu, U., Er, C., & Coşkun, A. (2022). Investigation of cytokine levels in calves with sepsis. Journal of the Hellenic Veterinary Medical Society, 73(2), 4113–4118. https://doi.org/10.12681/jhvms.26655
  • 11. Han, L., Teng, Y., Fan, Y., Gao, S., Li, F., & Wang, K. (2019). Receptor-Interacting Protein Kinase 3 (RIPK3) mRNA Levels Are Elevated in Blood Mononuclear Cells of Patients with Poor Prognosis of Acute-on-Chronic Hepatitis B Liver Failure. Tohoku Journal of Experimental Medicine, 247(4), 237-245. https://doi.org/10.1620/tjem.247.237
  • 12. He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., & Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell, 137, 1100–11.
  • 13. He, X., Da, R., S., & Nelson, J. (2017). Identification of Potent and Selective RIPK2 Inhibitors for the Treatment of Inflammatory Diseases. ACS Med Chem Lett 8(10), 1048–1053.
  • 14. Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., & Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology, 1, 489–495.
  • 15. Jarczak, D., Kluge, S., & Nierhaus, A. (2021). Sepsis-Pathophysiology and Therapeutic Concepts. Frontiers Medicine (Lausanne), 8, 628302. https://doi.org/10.3389/fmed.2021.628302
  • 16. Jun, J., C., Cominelli, F., & Abbott, D., W. (2013). RIP2 activity in inflammatory disease and implications for novel therapeutics. Journal of Leukocyte Biology, 94(5), 927–932.
  • 17. Kaczmarek, A., Vandenabeele, P., & Krysko, D., V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 38(2), 209-23. https://doi.org/10.1016/j.immuni.2013.02.003
  • 18. Kamal, A., M., Nabih, N., A., Rakha, N., M., & Sanad, E., F., (2023). Upregulation of necroptosis markers RIPK3/MLKL and their crosstalk with autophagy-related protein Beclin-1 in primary immune thrombocytopenia. Clinical and Experimental Medicine, 23(2), 447-456. https://doi.org/10.1007/s10238-022-00839-8
  • 19. Kaiser, W., J., Sridharan, H., Huang, C., Mandal, P., Upton, J., W., Gough, P., J., Sehon, C., A., Marquis, R., W., Bertin, J., & Mocarski, E., S., J. (2013). TRIF, RIP3 ve MLKL yoluyla otoyol benzeri reseptör 3 aracılı nekroz. Journal of Biological Chemistry, 288(43), 31.268-79.
  • 20. Li, X., Su, J., Cui, X., Li, Y., Barochia, A., & Eichacker, P., Q. (2009). Can we predict the effects of NF-kappaB inhibition in sepsis? Studies with parthenolide and ethyl pyruvate. Expert Opinion on Investigational Drugs, 18(8), 1047-60. https://doi.org/10.1517/13543780903018880
  • 21. Lofstedt, J., Dohoo, I., R., & Duizer, G. (1999). Model to predict septicemia in diarrheic calves. Journal of Veterinary Internal Medicine, 13(2), 81-88. https://doi.org/10.1892/0891- 6640(1999)013<0081: Mtpsid>2.3.Co;2
  • 22. Moujalled, D., M., Cook, W., D., Okamoto, T., Murphy, J., Lawlor, K., E., Vince, J., E., & Vaux, D., L. (2013). TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Discovery, 4(1), e465. https://doi.org/10.1038/cddis.2012.201
  • 23. Nachbur, U., Stafford, C., & Bankovacki, A. (2015). A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nature Communications, 6, 6442. https://doi.org/10.1038/ncomms7442
  • 24. Nedeva, C., Menassa, J., & Puthalakath, H. (2019). Sepsis: Inflammation Is a Necessary Evil. Frontiers in Cell and Developmental Biology, 7, 108. https://doi.org/10.3389/fcell.2019.00108
  • 25. Ofengeim, D., & Yuan, J. (2013). Regulation of RIPK1 kinase signalling at the crossroads of inflammation and cell death. Nature Reviews Molecular Cell Biology, 14, 727–36. 26. Qu, M., Wang, Y., Qiu, Z., Zhu, S., Guo, K., Chen, W., Miao, C., & Zhang, H. (2022). Necroptosis, Pyroptosis, Ferroptosis in Sepsis and Treatment. Shock, 57(6), 161-171. https://doi.org/10.1097/SHK.0000000000001936
  • 27. Singer, M., Deutschman, C., S., & Seymour, C., W. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8), 801–810.
  • 28. Upton, J. W., Kaiser W. J., & Mocarski E. S. (2010). Virus inhibition of RIPK3-dependent necrosis. Cell Host Microbe, 7, 302–313.
  • 29. Wang, Z., Jiang, H., Chen, S., Du, F., & Wang, X. (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell, 148, 228–243.
  • 30. Xu, Q., Guo, J., Li, X., Wang, Y., Wang, D., Xiao, K., Zhu, H., Wang, X., Hu, CA., Zhang, G., & Liu, Y. (2021). Necroptosis Underlies Hepatic Damage in a Piglet Model of Lipopolysaccharide-Induced Sepsis. Front Immunol, 12, 633830. https://doi.org/10.3389/fimmu.2021.633830
  • 31. Zhang, D. W., Shao J., Lin J., Zhang N., Lu B. J., Lin S.C., Dong M. Q., & Han J. (2009). RIPK3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 325(5938), 332-6. https://doi.org/10.1126/science.1172308
Year 2023, Volume: 8 Issue: 2, 130 - 135, 31.08.2023
https://doi.org/10.24880/maeuvfd.1314627

Abstract

Project Number

0522-YL-18

References

  • 1. Angus, D., C., & Vander, P., T. (2013). Severe sepsis and septic shock. The New England Journal of Medicine, 369, 840-51.
  • 2. Aygun, O., & Yildiz, R. (2018). Evaluation of thrombomodulin and pentraxin-3 as diagnostic biomarkers in calves with sepsis. Veterinarni Medicina, 63, 313–20.
  • 3. Bullock, A., N., & Degterev, A. (2015). Targeting RIPK1,2,3 to combat inflammation. Oncotarget, 6(33), 34057-8. https://doi.org/10.18632/oncotarget.6106
  • 4. Chen, H., Li, Y., Wu, J., Li, G., Tao, X., Lai, K., Yuan, Y., Zhang, X., Zou, Z., & Xu, Y. (2020). RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differentiation, 27(9), 2568-2585. https://doi.org/10.1038/s41418-020-0524-1
  • 5. Cho, Y., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., & Chan, F. K. (2009). Phosphorylation-driven assembly of the RIPK1-RIPK3 complex regulates programmed necrosis and virus-induced inflammation, Cell, 137, 1112–23.
  • 6. Duprez, L., Takahashi, N., Van , H., F., Vandendriessche, B., Goossens, V., Vanden, B., T., Declercq, W., Libert, C., Cauwels, A., & Vandenabeele, P. (2011). RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity, 35(6), 908-18. https://doi.org/10.1016/j.immuni.2011.09.020
  • 7. Fecteau, G., Paré, J., Van Metre, D. C., Smith, B. P., Holmberg, C. A., Guterbock, W., & Jang, S. (1997). Use of a clinical sepsis score for predicting bacteremia in neonatal dairy calves on a calf rearing farm. The Canadian Veterinary Journal, 38(2), 101-104.
  • 8. Fecteau, G., Smith, B., P., & George, L., W. (2009). Septicemia and meningitis in the newborn calf. Veterinary Clinics of North America: Food Animal Practice, 25(1), 195-208.
  • 9. Geserick, P., Wang, J., Schilling, R., Horn, S., Harris, P., A., Bertin, J., Gough, P. J., Feoktistova, M., & Leverkus, M. (2015). Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death & Disease 6(9), e1884. https://doi.org/10.1038/cddis.2015.240
  • 10. Guzelbektes, H., Sen I., Aydogdu, U., Er, C., & Coşkun, A. (2022). Investigation of cytokine levels in calves with sepsis. Journal of the Hellenic Veterinary Medical Society, 73(2), 4113–4118. https://doi.org/10.12681/jhvms.26655
  • 11. Han, L., Teng, Y., Fan, Y., Gao, S., Li, F., & Wang, K. (2019). Receptor-Interacting Protein Kinase 3 (RIPK3) mRNA Levels Are Elevated in Blood Mononuclear Cells of Patients with Poor Prognosis of Acute-on-Chronic Hepatitis B Liver Failure. Tohoku Journal of Experimental Medicine, 247(4), 237-245. https://doi.org/10.1620/tjem.247.237
  • 12. He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., & Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell, 137, 1100–11.
  • 13. He, X., Da, R., S., & Nelson, J. (2017). Identification of Potent and Selective RIPK2 Inhibitors for the Treatment of Inflammatory Diseases. ACS Med Chem Lett 8(10), 1048–1053.
  • 14. Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., & Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology, 1, 489–495.
  • 15. Jarczak, D., Kluge, S., & Nierhaus, A. (2021). Sepsis-Pathophysiology and Therapeutic Concepts. Frontiers Medicine (Lausanne), 8, 628302. https://doi.org/10.3389/fmed.2021.628302
  • 16. Jun, J., C., Cominelli, F., & Abbott, D., W. (2013). RIP2 activity in inflammatory disease and implications for novel therapeutics. Journal of Leukocyte Biology, 94(5), 927–932.
  • 17. Kaczmarek, A., Vandenabeele, P., & Krysko, D., V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 38(2), 209-23. https://doi.org/10.1016/j.immuni.2013.02.003
  • 18. Kamal, A., M., Nabih, N., A., Rakha, N., M., & Sanad, E., F., (2023). Upregulation of necroptosis markers RIPK3/MLKL and their crosstalk with autophagy-related protein Beclin-1 in primary immune thrombocytopenia. Clinical and Experimental Medicine, 23(2), 447-456. https://doi.org/10.1007/s10238-022-00839-8
  • 19. Kaiser, W., J., Sridharan, H., Huang, C., Mandal, P., Upton, J., W., Gough, P., J., Sehon, C., A., Marquis, R., W., Bertin, J., & Mocarski, E., S., J. (2013). TRIF, RIP3 ve MLKL yoluyla otoyol benzeri reseptör 3 aracılı nekroz. Journal of Biological Chemistry, 288(43), 31.268-79.
  • 20. Li, X., Su, J., Cui, X., Li, Y., Barochia, A., & Eichacker, P., Q. (2009). Can we predict the effects of NF-kappaB inhibition in sepsis? Studies with parthenolide and ethyl pyruvate. Expert Opinion on Investigational Drugs, 18(8), 1047-60. https://doi.org/10.1517/13543780903018880
  • 21. Lofstedt, J., Dohoo, I., R., & Duizer, G. (1999). Model to predict septicemia in diarrheic calves. Journal of Veterinary Internal Medicine, 13(2), 81-88. https://doi.org/10.1892/0891- 6640(1999)013<0081: Mtpsid>2.3.Co;2
  • 22. Moujalled, D., M., Cook, W., D., Okamoto, T., Murphy, J., Lawlor, K., E., Vince, J., E., & Vaux, D., L. (2013). TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Discovery, 4(1), e465. https://doi.org/10.1038/cddis.2012.201
  • 23. Nachbur, U., Stafford, C., & Bankovacki, A. (2015). A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nature Communications, 6, 6442. https://doi.org/10.1038/ncomms7442
  • 24. Nedeva, C., Menassa, J., & Puthalakath, H. (2019). Sepsis: Inflammation Is a Necessary Evil. Frontiers in Cell and Developmental Biology, 7, 108. https://doi.org/10.3389/fcell.2019.00108
  • 25. Ofengeim, D., & Yuan, J. (2013). Regulation of RIPK1 kinase signalling at the crossroads of inflammation and cell death. Nature Reviews Molecular Cell Biology, 14, 727–36. 26. Qu, M., Wang, Y., Qiu, Z., Zhu, S., Guo, K., Chen, W., Miao, C., & Zhang, H. (2022). Necroptosis, Pyroptosis, Ferroptosis in Sepsis and Treatment. Shock, 57(6), 161-171. https://doi.org/10.1097/SHK.0000000000001936
  • 27. Singer, M., Deutschman, C., S., & Seymour, C., W. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8), 801–810.
  • 28. Upton, J. W., Kaiser W. J., & Mocarski E. S. (2010). Virus inhibition of RIPK3-dependent necrosis. Cell Host Microbe, 7, 302–313.
  • 29. Wang, Z., Jiang, H., Chen, S., Du, F., & Wang, X. (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell, 148, 228–243.
  • 30. Xu, Q., Guo, J., Li, X., Wang, Y., Wang, D., Xiao, K., Zhu, H., Wang, X., Hu, CA., Zhang, G., & Liu, Y. (2021). Necroptosis Underlies Hepatic Damage in a Piglet Model of Lipopolysaccharide-Induced Sepsis. Front Immunol, 12, 633830. https://doi.org/10.3389/fimmu.2021.633830
  • 31. Zhang, D. W., Shao J., Lin J., Zhang N., Lu B. J., Lin S.C., Dong M. Q., & Han J. (2009). RIPK3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 325(5938), 332-6. https://doi.org/10.1126/science.1172308
There are 30 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Research Articles
Authors

Atilla Dogan 0009-0006-8605-6444

Yakuphan Baykan 0000-0002-2984-929X

Dilara Akçora Yıldız 0000-0003-2586-4385

Project Number 0522-YL-18
Publication Date August 31, 2023
Submission Date June 16, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Dogan, A., Baykan, Y., & Akçora Yıldız, D. (2023). Decreased gene expression of RIPK1 and RIPK3, necroptosis players, in calves with sepsis. Veterinary Journal of Mehmet Akif Ersoy University, 8(2), 130-135. https://doi.org/10.24880/maeuvfd.1314627