Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of Joining Methods of Thermoplastic Composites for Aerospace Applications

Yıl 2025, Cilt: 23 Sayı: 1, 8 - 14, 27.05.2025
https://doi.org/10.56193/matim.1540358

Öz

Fiber-reinforced thermoplastic matrix composite laminates pose great potential for current and future aircraft components. Thermoplastic composites' recyclability, long shelf life, resistance to environmental conditions, and high toughness properties are rapidly increasing their application areas. In addition, its environmental hazardous is much lower compared to thermosets. Thermoplastic composites have gained an important position in aviation due to these properties. In this study, some joining methods that can be used for a thermoplastic matrix composite aircraft structure have been experimentally examined. The methods were compared by performing a single lap shear test (ASTM D5868) at the coupon level. In addition, details about a novel ultrasonic welding machine that performs the welded joining method are also given. Results show that the joint strength of thermoplastic composites can be tailored by the chosen method and corresponding parameters.

Kaynakça

  • 1. Siddique, A., Iqbal, Z., Nawab, Y., & Shaker, K. (2022). A review of joining techniques for thermoplastic composite materials. Journal of Thermoplastic Composite Materials, 36(8), 3417–3454.
  • 2. Toozandehjani, M. (2018). Conventional and Advanced composites in Aerospace industry: Technologies revisited. American Journal of Aerospace Engineering, 5(1), 9.
  • 3. Zhao, H., Xi, J., Zheng, K., Shi, Z., Lin, J., Nikbin, K., Duan, S., & Wang, B. (2020). A review on solid riveting techniques in aircraft assembling. Manufacturing Review, 7, 40.
  • 4. Kim, K., Yoo, J., Yi, Y., & Kim, C. (2006). Failure mode and strength of uni-directional composite single lap bonded joints with different bonding methods. Composite Structures, 72(4), 477–485.
  • 5. Teti, R. (2002). Machining of composite materials. CIRP Annals, 51(2), 611–634.
  • 6. Liu, D., Tang, Y., & Cong, W. (2012). A review of mechanical drilling for composite laminates. Composite Structures, 94(4), 1265–1279.
  • 7. Bolat, Ç., Karakılınç, U., Yalçın, B., Öz, Y., Yavaş, Ç., Ergene, B., Ercetin, A., & Akkoyun, F. (2023). Effect of Drilling Parameters and Tool Geometry on the Thrust Force and Surface Roughness of Aerospace Grade Laminate Composites. Micromachines, 14(7), 1427.
  • 8. Knoop H. (2016). Numerical Simulation of failure of adhesively bonded composite parts using the cohesive zone method. Hamburg: Hamburg University of Applied Sciences;
  • 9. Fernández-Cañadas, L. M., Ivañez, I., Sanchez-Saez, S., & Barbero, E. J. (2019). Effect of adhesive thickness and overlap on the behavior of composite single-lap joints. Mechanics of Advanced Materials and Structures, 28(11), 1111–1120.
  • 10. Karaboğa, F., Göleç, F., Yunus, D. E., Toros, S., & Öz, Y. (2024). Mechanical response of carbon fiber reinforced epoxy composite parts joined with varying bonding techniques for aerospace applications. Composite Structures, 331, 117920.
  • 11. Nishida, H., Carvelli, V., Fujii, T., & Okubo, K. (2018). Thermoplastic vs. thermoset epoxy carbon textile composites. IOP Conference Series. Materials Science and Engineering, 406, 012043.
  • 12. Nasreen, A., Shaker, K., & Nawab, Y. (2021). Effect of surface treatments on metal–composite adhesive bonding for high-performance structures: an overview. Composite Interfaces, 28(12), 1221–1256.
  • 13. Lathabai, S. (2011). Joining of aluminium and its alloys. In Elsevier eBooks (pp. 607–654).
  • 14. Campilho, R. D. S. G., Da Silva, L. F. M., & Banea, M. D. (2017). Adhesive Bonding of Polymer Composites to Lightweight Metals. Joining of Polymer‐Metal Hybrid Structures: Principles and Applications, 29–59.
  • 15. Ye, L., Chen, Z., Lu, M., & Hou, M. (2005). De-consolidation and re-consolidation in CF/PPS thermoplastic matrix composites. Composites. Part a, Applied Science and Manufacturing, 36(7), 915–922.
  • 16. Reis, J. P., De Moura, M., & Samborski, S. (2020). Thermoplastic composites and their promising applications in joining and repair composites structures: a review. Materials, 13(24), 5832.
  • 17. 17. Khan, M. A., Aglietti, G.S., Crocombe, A.D., Viquerat, A.D. & Hamar, C.O. (2018). Development of design allowables for the design of composite bonded double-lap joints in aerospace applications. International Journal of Adhesion and Adhesives, 82, 221-232.

Havacılık Uygulamaları için Termoplastik Kompozitlerin Birleştirme Yöntemlerinin Geliştirilmesi

Yıl 2025, Cilt: 23 Sayı: 1, 8 - 14, 27.05.2025
https://doi.org/10.56193/matim.1540358

Öz

Fiber takviyeli termoplastik matrisli kompozit laminatlar, mevcut ve gelecekteki uçak bileşenleri için büyük bir potansiyel oluşturmaktadır. Termoplastik kompozitlerin, geri dönüştürülebilir olması, raf ömürlerinin uzunluğu, çevresel koşullara dayanımı, yüksek tokluk özellikleri uygulama alanlarını hızla arttırmaktadır. Ayrıca termosetlere göre çevreye verdiği zarar oldukça düşüktür. Termoplastik kompozitler bu özelliklerinden dolayı havacılıkta önemli bir konuma gelmiştir. Bu çalışmada, termoplastik matrisli kompozit bir hava aracı yapısalı için kullanılabilecek bazı birleştirme yöntemleri deneysel olarak incelenmiştir. Yöntemler, kupon seviyesinde tek bindirmeli kayma testi (ASTM D5868) yapılarak karşılaştırılmıştır. Ayrıca kaynaklı birleştirme yöntemini gerçekleştiren ultrasonik kaynak makinesine ilişkin detaylar da verilmiştir. Sonuçlar, termoplastik kompozitlerin bağlantı mukavemetinin seçilen yönteme ve karşılık gelen parametrelere göre ayarlanabileceğini göstermektedir.

Kaynakça

  • 1. Siddique, A., Iqbal, Z., Nawab, Y., & Shaker, K. (2022). A review of joining techniques for thermoplastic composite materials. Journal of Thermoplastic Composite Materials, 36(8), 3417–3454.
  • 2. Toozandehjani, M. (2018). Conventional and Advanced composites in Aerospace industry: Technologies revisited. American Journal of Aerospace Engineering, 5(1), 9.
  • 3. Zhao, H., Xi, J., Zheng, K., Shi, Z., Lin, J., Nikbin, K., Duan, S., & Wang, B. (2020). A review on solid riveting techniques in aircraft assembling. Manufacturing Review, 7, 40.
  • 4. Kim, K., Yoo, J., Yi, Y., & Kim, C. (2006). Failure mode and strength of uni-directional composite single lap bonded joints with different bonding methods. Composite Structures, 72(4), 477–485.
  • 5. Teti, R. (2002). Machining of composite materials. CIRP Annals, 51(2), 611–634.
  • 6. Liu, D., Tang, Y., & Cong, W. (2012). A review of mechanical drilling for composite laminates. Composite Structures, 94(4), 1265–1279.
  • 7. Bolat, Ç., Karakılınç, U., Yalçın, B., Öz, Y., Yavaş, Ç., Ergene, B., Ercetin, A., & Akkoyun, F. (2023). Effect of Drilling Parameters and Tool Geometry on the Thrust Force and Surface Roughness of Aerospace Grade Laminate Composites. Micromachines, 14(7), 1427.
  • 8. Knoop H. (2016). Numerical Simulation of failure of adhesively bonded composite parts using the cohesive zone method. Hamburg: Hamburg University of Applied Sciences;
  • 9. Fernández-Cañadas, L. M., Ivañez, I., Sanchez-Saez, S., & Barbero, E. J. (2019). Effect of adhesive thickness and overlap on the behavior of composite single-lap joints. Mechanics of Advanced Materials and Structures, 28(11), 1111–1120.
  • 10. Karaboğa, F., Göleç, F., Yunus, D. E., Toros, S., & Öz, Y. (2024). Mechanical response of carbon fiber reinforced epoxy composite parts joined with varying bonding techniques for aerospace applications. Composite Structures, 331, 117920.
  • 11. Nishida, H., Carvelli, V., Fujii, T., & Okubo, K. (2018). Thermoplastic vs. thermoset epoxy carbon textile composites. IOP Conference Series. Materials Science and Engineering, 406, 012043.
  • 12. Nasreen, A., Shaker, K., & Nawab, Y. (2021). Effect of surface treatments on metal–composite adhesive bonding for high-performance structures: an overview. Composite Interfaces, 28(12), 1221–1256.
  • 13. Lathabai, S. (2011). Joining of aluminium and its alloys. In Elsevier eBooks (pp. 607–654).
  • 14. Campilho, R. D. S. G., Da Silva, L. F. M., & Banea, M. D. (2017). Adhesive Bonding of Polymer Composites to Lightweight Metals. Joining of Polymer‐Metal Hybrid Structures: Principles and Applications, 29–59.
  • 15. Ye, L., Chen, Z., Lu, M., & Hou, M. (2005). De-consolidation and re-consolidation in CF/PPS thermoplastic matrix composites. Composites. Part a, Applied Science and Manufacturing, 36(7), 915–922.
  • 16. Reis, J. P., De Moura, M., & Samborski, S. (2020). Thermoplastic composites and their promising applications in joining and repair composites structures: a review. Materials, 13(24), 5832.
  • 17. 17. Khan, M. A., Aglietti, G.S., Crocombe, A.D., Viquerat, A.D. & Hamar, C.O. (2018). Development of design allowables for the design of composite bonded double-lap joints in aerospace applications. International Journal of Adhesion and Adhesives, 82, 221-232.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma, Geliştirme ve Uygulama Makaleleri
Yazarlar

Furkan Karaboğa 0000-0002-5666-6130

Eray Koştur 0000-0002-1775-2757

Zelal Yavuz 0000-0002-2277-0861

Merve Özkutlu Demirel 0000-0002-3176-4842

Mahide Betül Öztürkmen 0000-0001-6271-287X

Yahya Öz 0000-0003-3784-0495

Serkan Toros 0000-0003-0438-2862

Fahrettin Öztürk 0000-0001-9517-7957

Yayımlanma Tarihi 27 Mayıs 2025
Gönderilme Tarihi 29 Ağustos 2024
Kabul Tarihi 12 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 23 Sayı: 1

Kaynak Göster

Vancouver Karaboğa F, Koştur E, Yavuz Z, Özkutlu Demirel M, Öztürkmen MB, Öz Y, Toros S, Öztürk F. Development of Joining Methods of Thermoplastic Composites for Aerospace Applications. MATİM. 2025;23(1):8-14.