Research Article
BibTex RIS Cite

Downregulation of miR-568 in Atrial Fibrillation Leads to Increased Expression of NAPMT and TRMP7

Year 2024, Volume: 6 Issue: 2, 159 - 164, 16.05.2024
https://doi.org/10.37990/medr.1394921

Abstract

Aim: Atrial fibrillation (AF) is known as the most common permanent cardiac arrhythmia worldwide with its incidence and prevalence gradually increase with age and cause significant morbidity and mortality. However, the epigenetic alterations underlying the development of this disease remains less understood. MicroRNAs (miRNAs), as one of the epigenetic regulators, are small non-coding RNAs that can target multiple genes to modulate proteins in different signaling pathways. Current studies have demonstrated that miRNAs, which are pivotal regulators of gene expression, may be involved in the pathophysiology of AF. The current study aims to clarify the miRNA regulated cellular signaling in atrial fibrillation.
Material and Method: An AF model was generated by providing external electrical stimulation to the HL-1 mouse cardiomyocyte cell line for 24 hours in this study. To understand the molecular mechanisms of miRNAs underlying the AF model, miRNA microarray analysis was performed. The gene sets obtained from the microarray analysis and the bioinformatically obtained putative targets were intersected and pathway enrichment analysis was performed. qRT-PCR was performed for validation of the selected miRNAs and potential targets.
Results: miRNA expression profile changes between the control group without external stimulation and the samples at the end of 3-, 6-, 12- and 24-hour stimulation were compared with microarray analysis. In particular, our transcriptomic analysis showed 5 distinctively expressed miRNAs (DEmiRNAs) whose target genes are associated with cardiovascular development within the stimulated groups in HL-1 cells. Additionally, our bioinformatics analysis revealed that targets of these miRNAs are concentrated in biological processes associated with cardiovascular development: smooth muscle cell proliferation, muscle cell proliferation, cell morphogenesis involved in differentiation and regulation of cell differentiation. Specifically, qPCR-based analyses confirmed the inverse correlation of miR-568 and potential targets of this miRNA. While miR-568 expression decreased with prolonged stimulation, expression of its potential targets, NAMPT and TRPM7, increased during prolonged stimulation.
Conclusion: This study supported the potential regulative role of miRNAs and their targets in the development of AF.

References

  • Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace. 2016;18:1609-78.
  • Lau DH, Linz D, Sanders P. New findings in atrial fibrillation mechanisms. Card Electrophysiol Clin. 2019;11:563-71.
  • Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63:2335-45.
  • Saljic A, Heijman J, Dobrev D. Emerging antiarrhythmic drugs for atrial fibrillation. Int J Mol Sci. 2022;23:4096.
  • Brundel BJ, Van Gelder IC, Henning RH, et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol. 2001;37:926-32.
  • Santulli G, D’Ascia C. Atrial remodelling in echocardiographic super-responders to cardiac resynchronization therapy. Heart. 2012;98:517; author reply 517.
  • Nattel S, Heijman J, Zhou L, Dobrev D. Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective. Circ Res. 2020;127:51-72.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-97.
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet. 2008;9:102-14.
  • Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106:1035-9.
  • Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677-84.
  • D’Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31:2765-73.
  • Grueter CE, van Rooij E, Johnson BA, et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell. 2012;149:671-83.
  • Latronico MVG, Condorelli G. MicroRNA-dependent control of the cardiac fibroblast secretome. Circ Res. 2013;113:1099-101.
  • Claycomb WC, Lanson NAJ, Stallworth BS, et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A. 1998;95:2979-84.
  • Morillo CA, Banerjee A, Perel P, et al. Atrial fibrillation: the current epidemic. J Geriatr Cardiol. 2017;14:195-203.
  • Sohns C, Marrouche NF. Atrial fibrillation and cardiac fibrosis. Eur Heart J. 2020;41:1123-31.
  • Gutierrez A, Chung MK. Genomics of atrial fibrillation. Curr Cardiol Rep. 2016;18:55.
  • Pérez-Serra A, Campuzano O, Brugada R. Update about atrial fibrillation genetics. Curr Opin Cardiol. 2017;32:246-52.
  • Lin H, Yin X, Xie Z, et al. Methylome-wide association study of atrial fibrillation in framingham heart study. Sci Rep. 2017;7:40377.
  • Poudel P, Xu Y, Cui Z, et al. Atrial fibrillation: recent advances in understanding the role of microRNAs in atrial remodeling with an electrophysiological overview. Cardiology. 2015;131:58-67.
  • Orenes-Piñero E, Montoro-García S, Patel J V, et al. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol. 2013;167:1651-9.
  • Wang Z, Lu Y, Yang B. MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res. 2011;89:710-21.
  • Zhao X, Wang Y, Sun X. The functions of microRNA-208 in the heart. Diabetes Res Clin Pract. 2020;160:108004.
  • Ikitimur B, Cakmak HA, Coskunpinar E, et al. The relationship between circulating microRNAs and left ventricular mass in symptomatic heart failure patients with systolic dysfunction. Kardiol Pol. 2015;73:740-6.
  • Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics. 2006;7:159.
  • Fonfria E, Murdock PR, Cusdin FS, et al. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 2006;26:159-78.
  • Jin J, Desai BN, Navarro B, et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science. 2008;322:756-60.
  • Du J, Xie J, Zhang Z, et al. TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res. 2010;106:992-1003.
  • Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137:2256-73.
  • Yamamoto T, Byun J, Zhai P, et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One. 2014;9:e98972.
  • Byun J, Oka SI, Imai N, et al. Both gain and loss of Nampt function promote pressure overload-induced heart failure. Am J Physiol Heart Circ Physiol. 2019;317:H711-25.
  • Feng D, Xu D, Murakoshi N, et al. Nicotinamide phosphoribosyltransferase (nampt)/nicotinamide adenine dinucleotide (nad) axis suppresses atrial fibrillation by modulating the calcium handling pathway. Int J Mol Sci. 2020;21.
  • Brauch KM, Karst ML, Herron KJ, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol. 2009;54:930-41.
  • Guo W, Schafer S, Greaser ML, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18:766-73.
  • Filippello A, Lorenzi P, Bergamo E, Romanelli MG. Identification of nuclear retention domains in the RBM20 protein. FEBS Lett. 2013;587:2989-95.
  • van den Hoogenhof MMG, Beqqali A, Amin AS, et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation. 2018;138:1330-42.
  • Wells QS, Becker JR, Su YR, et al. Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet. 2013;6:317-26.
  • Lennermann D, Backs J, van den Hoogenhof MMG. New insights in RBM20 cardiomyopathy. Curr Heart Fail Rep. 2020;17:234-46.
Year 2024, Volume: 6 Issue: 2, 159 - 164, 16.05.2024
https://doi.org/10.37990/medr.1394921

Abstract

References

  • Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace. 2016;18:1609-78.
  • Lau DH, Linz D, Sanders P. New findings in atrial fibrillation mechanisms. Card Electrophysiol Clin. 2019;11:563-71.
  • Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63:2335-45.
  • Saljic A, Heijman J, Dobrev D. Emerging antiarrhythmic drugs for atrial fibrillation. Int J Mol Sci. 2022;23:4096.
  • Brundel BJ, Van Gelder IC, Henning RH, et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol. 2001;37:926-32.
  • Santulli G, D’Ascia C. Atrial remodelling in echocardiographic super-responders to cardiac resynchronization therapy. Heart. 2012;98:517; author reply 517.
  • Nattel S, Heijman J, Zhou L, Dobrev D. Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective. Circ Res. 2020;127:51-72.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-97.
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet. 2008;9:102-14.
  • Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106:1035-9.
  • Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677-84.
  • D’Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31:2765-73.
  • Grueter CE, van Rooij E, Johnson BA, et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell. 2012;149:671-83.
  • Latronico MVG, Condorelli G. MicroRNA-dependent control of the cardiac fibroblast secretome. Circ Res. 2013;113:1099-101.
  • Claycomb WC, Lanson NAJ, Stallworth BS, et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A. 1998;95:2979-84.
  • Morillo CA, Banerjee A, Perel P, et al. Atrial fibrillation: the current epidemic. J Geriatr Cardiol. 2017;14:195-203.
  • Sohns C, Marrouche NF. Atrial fibrillation and cardiac fibrosis. Eur Heart J. 2020;41:1123-31.
  • Gutierrez A, Chung MK. Genomics of atrial fibrillation. Curr Cardiol Rep. 2016;18:55.
  • Pérez-Serra A, Campuzano O, Brugada R. Update about atrial fibrillation genetics. Curr Opin Cardiol. 2017;32:246-52.
  • Lin H, Yin X, Xie Z, et al. Methylome-wide association study of atrial fibrillation in framingham heart study. Sci Rep. 2017;7:40377.
  • Poudel P, Xu Y, Cui Z, et al. Atrial fibrillation: recent advances in understanding the role of microRNAs in atrial remodeling with an electrophysiological overview. Cardiology. 2015;131:58-67.
  • Orenes-Piñero E, Montoro-García S, Patel J V, et al. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol. 2013;167:1651-9.
  • Wang Z, Lu Y, Yang B. MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res. 2011;89:710-21.
  • Zhao X, Wang Y, Sun X. The functions of microRNA-208 in the heart. Diabetes Res Clin Pract. 2020;160:108004.
  • Ikitimur B, Cakmak HA, Coskunpinar E, et al. The relationship between circulating microRNAs and left ventricular mass in symptomatic heart failure patients with systolic dysfunction. Kardiol Pol. 2015;73:740-6.
  • Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics. 2006;7:159.
  • Fonfria E, Murdock PR, Cusdin FS, et al. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 2006;26:159-78.
  • Jin J, Desai BN, Navarro B, et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science. 2008;322:756-60.
  • Du J, Xie J, Zhang Z, et al. TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res. 2010;106:992-1003.
  • Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137:2256-73.
  • Yamamoto T, Byun J, Zhai P, et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One. 2014;9:e98972.
  • Byun J, Oka SI, Imai N, et al. Both gain and loss of Nampt function promote pressure overload-induced heart failure. Am J Physiol Heart Circ Physiol. 2019;317:H711-25.
  • Feng D, Xu D, Murakoshi N, et al. Nicotinamide phosphoribosyltransferase (nampt)/nicotinamide adenine dinucleotide (nad) axis suppresses atrial fibrillation by modulating the calcium handling pathway. Int J Mol Sci. 2020;21.
  • Brauch KM, Karst ML, Herron KJ, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol. 2009;54:930-41.
  • Guo W, Schafer S, Greaser ML, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18:766-73.
  • Filippello A, Lorenzi P, Bergamo E, Romanelli MG. Identification of nuclear retention domains in the RBM20 protein. FEBS Lett. 2013;587:2989-95.
  • van den Hoogenhof MMG, Beqqali A, Amin AS, et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation. 2018;138:1330-42.
  • Wells QS, Becker JR, Su YR, et al. Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet. 2013;6:317-26.
  • Lennermann D, Backs J, van den Hoogenhof MMG. New insights in RBM20 cardiomyopathy. Curr Heart Fail Rep. 2020;17:234-46.
There are 39 citations in total.

Details

Primary Language English
Subjects Epigenetics, Gene Expression
Journal Section Original Articles
Authors

Senem Noyan 0000-0001-6455-3702

Yasemin Öztemur Islakoğlu 0000-0001-7792-7777

Emre Akpınar 0000-0002-9799-3197

Publication Date May 16, 2024
Submission Date November 27, 2023
Acceptance Date February 4, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

AMA Noyan S, Öztemur Islakoğlu Y, Akpınar E. Downregulation of miR-568 in Atrial Fibrillation Leads to Increased Expression of NAPMT and TRMP7. Med Records. May 2024;6(2):159-164. doi:10.37990/medr.1394921

17741

Chief Editors

Assoc. Prof. Zülal Öner
Address: İzmir Bakırçay University, Department of Anatomy, İzmir, Türkiye

Assoc. Prof. Deniz Şenol
Address: Düzce University, Department of Anatomy, Düzce, Türkiye

E-mail: medrecsjournal@gmail.com

Publisher:
Medical Records Association (Tıbbi Kayıtlar Derneği)
Address: Düzce / Türkiye

Publication Support:

Effect Publishing & Agency
Phone: + 90 (553) 610 67 80
E-mail: info@effectpublishing.com