Research Article
BibTex RIS Cite
Year 2023, Volume: 3 Issue: 2, 53 - 60, 31.12.2023

Abstract

References

  • 1. Singla MK, Nijhawan P, Oberoi AS. Hydrogen fuel and fuel cell tech￾nology for cleaner future: a review (Feb, 10.1007/s11356-020-12231-8, 2021). Environ Sci Pollut Res. 2021;28(15):19536-. [
  • 2. Öztürk A, Akay RG, Erkan S, Bayrakçeken Yurtcan A. Introduction to fuel cells. In Direct Liquid Fuel Cells Fundamentals, Advances and Future. Cambridge: Academic Press; 2020:1-47.
  • 3. Wu JB, Yang H. Platinum-based oxygen reduction electrocatalysts. Acc Chem Res. 2013;46(8):1848-1857.
  • 4. Çelik P, Bayrakçeken Yurtcan A. Platinum/Vulcan XC-72R electro￾catalyst doped with melamine for polymer electrolyte membrane fuel cells. Nanoera. 2023;3(1):16-19.
  • 5. Bharti A, Cheruvally G. Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance. J Power Sources. 2017;360:196-205.
  • 6. Soboleva T, Zhao X, Malek K, Xie Z, Navessin T, Holdcroft S. On the micro-, Meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl Mater Interfaces. 2010;2(2):375-384.
  • 7. Dicks AL. The role of carbon in fuel cells. J Power Sources. 2006;156(2):128-141.
  • 8. Kim P, Kim HS, Joo JB, Kim WY, Song IK, Yi JH. Preparation and appli￾cation of nanoporous carbon templated by silica particles for use as a catalyst support for direct methanol fuel cell. J Power Sources. 2005;145(2):139-146.
  • 9. Shahgaldi S, Hamelin J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Car￾bon. 2015;94:705-728.
  • 10. Tang J, Liu J, Torad NL, Kimura T, Yamauchi Y. Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today. 2014;9(3):305-323.
  • 11. Han L, Zhu X, Yang F, Liu Q, Jia XL. Eco-conversion of coal into nonporous graphite for high-performance anodes of lithium-ion batteries. Powder Technol. 2021;382:40-47.
  • 12. Mizutani N, Ishibashi K. Enhancing PtCo electrode catalyst performance for fuel cell vehicle application. World Congress and Exhibition. SAE International; 2016.
  • 13. Jayawickrama SM, Fujigaya T. Study of polymer-coating on various types of carbon supports to enhance platinum utilization efficiency in polymer electrolyte membrane fuel cell electrocatalysts. Meet Abstr. 2019;54:2363-2363.
  • 14. Çögenli MS, Bayrakçeken Yurtcan A. Nanoparticles supported on Bi2O3 for direct formic acid fuel cells. Nanoera. 2022;2:45-48.
  • 15. Bayrakçeken A, Türker L, Eroglu I. Improvement of carbon dioxide tolerance of PEMFC electrocatalyst by using microwave irradiation technique. Int J Hydrog Energy. 2008;33(24):7527-7537.
  • 16. Song SQ, Liu JC, Shi JY, et al. The effect of microwave operation parameters on the electrochemical performance of Pt/C catalysts. Appl Catal B. 2011;103(3-4):287-293.
  • 17. Wang HW, Dong RX, Chang HY, Liu CL, Chen-Yang YW. Preparation and catalytic activity of Pt/C materials via microwave irradiation. Mater Lett. 2007;61(3):830-833.
  • 18. Harish S, Baranton S, Coutanceau C, Joseph J. Microwave assisted polyol method for the preparation of Pt/C, Ru/C and PtRu/C nanoparticles and its application in electrooxidation of methanol. J Power Sources. 2012;214:33-39.
  • 19. Knupp SL, Li WZ, Paschos O, Murray TM, Snyder J, Haldar P. The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques. Car￾bon. 2008;46(10):1276-1284.
  • 20. Öztürk A, Özçelik N, Bayrakçeken Yurtcan AB. Platinum/graphene nanoplatelets/silicone rubber composites as polymer electrolyte membrane fuel cell catalysts. Mater Chem Phys. 2021;260.
  • 21. Özçelik N, Bayrakçeken Yurtcan A. Effect of nitrogen doping amount on the activity of commercial electrocatalyst used in PEM fuel cells. Nanoera. 2022;2:5-9.
  • 22. Tian Y, Wu JZ. A comprehensive analysis of the BET area for nanopo￾rous materials. AIChE J. 2018;64(1):286-293.
  • 23. Bardestani R, Patience GS, Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT. Can J Chem Eng. 2019;97(11):2781-2791.
  • 24. Yang YW, Hou XY, Ding CF, Lan JL, Yu YH, Yang XP. Eco-friendly fabricated nonporous carbon nanofibers with high volumetric capacitance: improving rate performance by tri-dopants of nitrogen, phosphorus, and silicon. Inorg Chem Front. 2017;4(12):2024-2032.
  • 25. Liu C, Shi GF, Wang GY, et al. Preparation and electrochemical studies of electrospun phosphorus-doped porous carbon nanofibers. RSC Adv. 2019;9(12):6898-6906.
  • 26. Fina F, Callear SK, Carins GM, Irvine JTS. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem Mater. 2015;27(7):2612-2618.
  • 27. Honbo H, Takei K, Ishii Y, Nishida T. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding. J Power Sources. 2009;189(1):337-343.
  • 28. Öztürk A, Bayrakçeken Yurtcan A. Alternative support material to the platinum catalyst used for oxygen reduction reaction: nonporous carbon. Gazi Univ J Sci. 2023;36(4):1463-1478.
  • 29. Jurkiewicz K, Pawlyta M, Burian A. Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. C. 2018;4(4).
  • 30. Zhao J, Ozden A, Shahgaldi S, Alaefour IE, Li XG, Hamdullahpur F. Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells. Energy. 2018;150:69-76.
  • 31. Avcioglu GS, Ficicilar B, Eroglu I. Improved PEM fuel cell performance with hydrophobic catalyst layers. Int J Hydrog Energy. 2018;43(40):18632-18641.
  • 32. Gupta M, Singh PK, Bhattacharya B, Shulga YM, Shulga NY, Kumar Y. Progress, status and prospects of non-porous, heteroatom-doped carbons for supercapacitors and other electrochemical applications. Appl Phys A. 2019;125(2). [CrossRef]
  • 33. Stevens DA, Dahn JR. Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells. J Electrochem Soc. 2003;150(6):A770-A775. [CrossRef]
  • 34. Macauley N, Papadias DD, Fairweather J, et al. Carbon corrosion in PEM fuel cells and the development of accelerated stress tests. J Electrochem Soc. 2018;165:F3148-F3160.
  • 35. Kanninen P, Eriksson B, Davodi F, et al. Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes. Electrochem Acta. 2020;332.
  • 36. Avasarala B, Moore R, Haldar P. Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim Acta. 2010;55(16):4765-4771.
  • 37. Wang JJ, Yin GP, Shao YY, Zhang S, Wang ZB, Gao YZ. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J Power Sources. 2007;171(2):331-339.
  • 38. Wu JF, Yuan XZ, Wang HJ, Blanco M, Martin JJ, Zhang JJ. Diagnostic tools in PEM fuel cell research: Part I - Electrochemical techniques. Int J Hydrog Energ. 2008;33(6):1735-1746.
  • 39. Darowicki K, Gawel L. Impedance measurement and selection of electrochemical equivalent circuit of a working PEM fuel cell cathode. Electrocatalysis. 2017;8(3):235-244.
  • 40. Liu HJ, Li J, Xu XH, et al. Highly graphitic carbon black-supported platinum nanoparticle catalyst and its enhanced electrocatalytic activity for the oxygen reduction reaction in acidic medium. Electrochim Acta. 2013;93:25-31.
  • 41. Yan XD, Liu Y, Fan XR, Jia XL, Yu YH, Yang XP. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors. J Power Sources. 2014;248:745-751.
  • 42. Chakraborty I, Ghosh N, Ghosh D, Dubey BK, Pradhan D, Ghangrekar MM. Application of synthesized porous graphitic carbon nitride and its composite as excellent electrocatalysts in microbial fuel cell. Int J Hydrog Energ. 2020;45(55):31056-31069.
  • 43. Malko D, Lopes T, Ticianelli EA, Kucernak A. A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolyzed transition metal-N-C catalysts. J Power Sources. 2016;323:189-200.
  • 44. Rohendi D, Majlan EH, Mohamad AB, Shyuan LK, Raharjo J. Compari￾son of the performance of proton exchange membrane fuel cell (PEMFC) electrodes with different carbon powder content and meth￾ods of manufacture. Indonesian J Fundam Appl Chem. 2016;1(3):61- 66. [CrossRef] 45. Lefèvre M, Dodelet JP. Fe-based electrocatalysts made with micropo￾rous pristine carbon black supports for the reduction of oxygen in PEM fuel cells. Electrochim Acta. 2008;53(28):8269-8276. [CrossRef] 46. Takeshita T, Kamitaka Y, Shinozaki K, Kodama K, Morimoto Y. Evalu￾ation of ionomer coverage on Pt catalysts in polymer electrolyte membrane fuel cells by CO stripping voltammetry and its effect on oxygen reduction reaction activity. J Electroanal Chem. 2020;871. [CrossRef] 47. O’Brien TE, Herrera S, Langlois DA, et al. Impact of carbon support structure on the durability of PtCo electrocatalysts. J Electrochem Soc. 2021;168.
  • 48. Tian J, Birry L, Jaouen F, Dodelet JP. Fe-based catalysts for oxygen reduction in proton exchange membrane fuel cells with cyanamide as nitrogen precursor and/or pore-filler. Electrochim Acta. 2011;56(9):3276-3285.

Nonporous Carbon-Supported Platinum Catalyst for Polymer Electrolyte Membrane Fuel Cell

Year 2023, Volume: 3 Issue: 2, 53 - 60, 31.12.2023

Abstract

In this study, a commercial, nonporous carbon black was used as catalyst support for the dispersion of platinum (Pt) nanoparticles (NPs) in a polymer electrolyte membrane (PEM) fuel cell. The microstructure of nonporous carbon black was determined by Brunauer–Emmett–Teller analysis and crystal structure by x-ray diffraction (XRD) analysis. The surface area of carbon black is 72.6 m2/g, and the micropore volume has low fraction in the total volume. The fact that the d(002)value determined according to XRD analysis is 0.377 nm indicates the amorphous structure of nonporous carbon. Inductively coupled plasma mass spectrometry (ICP-MS) analysis determined the Pt loading on nonporous carbon as 15 wt.%. Catalyst support was also investigated electrochemically by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In CV analysis, as the scan rate increases, capacitive property increases. Furthermore, the low current density of the quinone-hydroquinone (Q-HQ) redox peak suggests nonporous carbon black’s corrosion resistance. Nonporous carbon black, whose charge transfer resistance is 454.5 Ω based on EIS analysis, facilitates the mass transfer of species due to its low porosity. Nonporous carbon is preferred to alleviate the water flooding that occurs at the cathode electrode of PEM fuel cells. Platinum NPs supported with nonporous carbon provided 15 and 40 mW/cm2 maximum power
densities in PEM fuel cell performance tests at 60°C and 70°C, respectively. As the sustainable energy conversion technology of the future, PEM fuel cells can produce enough power to operate everything from mW-scale portable applications to kW-MW-scale transportation and residential uses. In this study, the performance of the nonporous carbon-supported Pt catalyst can be suitable for mW scale applications.

References

  • 1. Singla MK, Nijhawan P, Oberoi AS. Hydrogen fuel and fuel cell tech￾nology for cleaner future: a review (Feb, 10.1007/s11356-020-12231-8, 2021). Environ Sci Pollut Res. 2021;28(15):19536-. [
  • 2. Öztürk A, Akay RG, Erkan S, Bayrakçeken Yurtcan A. Introduction to fuel cells. In Direct Liquid Fuel Cells Fundamentals, Advances and Future. Cambridge: Academic Press; 2020:1-47.
  • 3. Wu JB, Yang H. Platinum-based oxygen reduction electrocatalysts. Acc Chem Res. 2013;46(8):1848-1857.
  • 4. Çelik P, Bayrakçeken Yurtcan A. Platinum/Vulcan XC-72R electro￾catalyst doped with melamine for polymer electrolyte membrane fuel cells. Nanoera. 2023;3(1):16-19.
  • 5. Bharti A, Cheruvally G. Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance. J Power Sources. 2017;360:196-205.
  • 6. Soboleva T, Zhao X, Malek K, Xie Z, Navessin T, Holdcroft S. On the micro-, Meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl Mater Interfaces. 2010;2(2):375-384.
  • 7. Dicks AL. The role of carbon in fuel cells. J Power Sources. 2006;156(2):128-141.
  • 8. Kim P, Kim HS, Joo JB, Kim WY, Song IK, Yi JH. Preparation and appli￾cation of nanoporous carbon templated by silica particles for use as a catalyst support for direct methanol fuel cell. J Power Sources. 2005;145(2):139-146.
  • 9. Shahgaldi S, Hamelin J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Car￾bon. 2015;94:705-728.
  • 10. Tang J, Liu J, Torad NL, Kimura T, Yamauchi Y. Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today. 2014;9(3):305-323.
  • 11. Han L, Zhu X, Yang F, Liu Q, Jia XL. Eco-conversion of coal into nonporous graphite for high-performance anodes of lithium-ion batteries. Powder Technol. 2021;382:40-47.
  • 12. Mizutani N, Ishibashi K. Enhancing PtCo electrode catalyst performance for fuel cell vehicle application. World Congress and Exhibition. SAE International; 2016.
  • 13. Jayawickrama SM, Fujigaya T. Study of polymer-coating on various types of carbon supports to enhance platinum utilization efficiency in polymer electrolyte membrane fuel cell electrocatalysts. Meet Abstr. 2019;54:2363-2363.
  • 14. Çögenli MS, Bayrakçeken Yurtcan A. Nanoparticles supported on Bi2O3 for direct formic acid fuel cells. Nanoera. 2022;2:45-48.
  • 15. Bayrakçeken A, Türker L, Eroglu I. Improvement of carbon dioxide tolerance of PEMFC electrocatalyst by using microwave irradiation technique. Int J Hydrog Energy. 2008;33(24):7527-7537.
  • 16. Song SQ, Liu JC, Shi JY, et al. The effect of microwave operation parameters on the electrochemical performance of Pt/C catalysts. Appl Catal B. 2011;103(3-4):287-293.
  • 17. Wang HW, Dong RX, Chang HY, Liu CL, Chen-Yang YW. Preparation and catalytic activity of Pt/C materials via microwave irradiation. Mater Lett. 2007;61(3):830-833.
  • 18. Harish S, Baranton S, Coutanceau C, Joseph J. Microwave assisted polyol method for the preparation of Pt/C, Ru/C and PtRu/C nanoparticles and its application in electrooxidation of methanol. J Power Sources. 2012;214:33-39.
  • 19. Knupp SL, Li WZ, Paschos O, Murray TM, Snyder J, Haldar P. The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques. Car￾bon. 2008;46(10):1276-1284.
  • 20. Öztürk A, Özçelik N, Bayrakçeken Yurtcan AB. Platinum/graphene nanoplatelets/silicone rubber composites as polymer electrolyte membrane fuel cell catalysts. Mater Chem Phys. 2021;260.
  • 21. Özçelik N, Bayrakçeken Yurtcan A. Effect of nitrogen doping amount on the activity of commercial electrocatalyst used in PEM fuel cells. Nanoera. 2022;2:5-9.
  • 22. Tian Y, Wu JZ. A comprehensive analysis of the BET area for nanopo￾rous materials. AIChE J. 2018;64(1):286-293.
  • 23. Bardestani R, Patience GS, Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT. Can J Chem Eng. 2019;97(11):2781-2791.
  • 24. Yang YW, Hou XY, Ding CF, Lan JL, Yu YH, Yang XP. Eco-friendly fabricated nonporous carbon nanofibers with high volumetric capacitance: improving rate performance by tri-dopants of nitrogen, phosphorus, and silicon. Inorg Chem Front. 2017;4(12):2024-2032.
  • 25. Liu C, Shi GF, Wang GY, et al. Preparation and electrochemical studies of electrospun phosphorus-doped porous carbon nanofibers. RSC Adv. 2019;9(12):6898-6906.
  • 26. Fina F, Callear SK, Carins GM, Irvine JTS. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem Mater. 2015;27(7):2612-2618.
  • 27. Honbo H, Takei K, Ishii Y, Nishida T. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding. J Power Sources. 2009;189(1):337-343.
  • 28. Öztürk A, Bayrakçeken Yurtcan A. Alternative support material to the platinum catalyst used for oxygen reduction reaction: nonporous carbon. Gazi Univ J Sci. 2023;36(4):1463-1478.
  • 29. Jurkiewicz K, Pawlyta M, Burian A. Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. C. 2018;4(4).
  • 30. Zhao J, Ozden A, Shahgaldi S, Alaefour IE, Li XG, Hamdullahpur F. Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells. Energy. 2018;150:69-76.
  • 31. Avcioglu GS, Ficicilar B, Eroglu I. Improved PEM fuel cell performance with hydrophobic catalyst layers. Int J Hydrog Energy. 2018;43(40):18632-18641.
  • 32. Gupta M, Singh PK, Bhattacharya B, Shulga YM, Shulga NY, Kumar Y. Progress, status and prospects of non-porous, heteroatom-doped carbons for supercapacitors and other electrochemical applications. Appl Phys A. 2019;125(2). [CrossRef]
  • 33. Stevens DA, Dahn JR. Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells. J Electrochem Soc. 2003;150(6):A770-A775. [CrossRef]
  • 34. Macauley N, Papadias DD, Fairweather J, et al. Carbon corrosion in PEM fuel cells and the development of accelerated stress tests. J Electrochem Soc. 2018;165:F3148-F3160.
  • 35. Kanninen P, Eriksson B, Davodi F, et al. Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes. Electrochem Acta. 2020;332.
  • 36. Avasarala B, Moore R, Haldar P. Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim Acta. 2010;55(16):4765-4771.
  • 37. Wang JJ, Yin GP, Shao YY, Zhang S, Wang ZB, Gao YZ. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J Power Sources. 2007;171(2):331-339.
  • 38. Wu JF, Yuan XZ, Wang HJ, Blanco M, Martin JJ, Zhang JJ. Diagnostic tools in PEM fuel cell research: Part I - Electrochemical techniques. Int J Hydrog Energ. 2008;33(6):1735-1746.
  • 39. Darowicki K, Gawel L. Impedance measurement and selection of electrochemical equivalent circuit of a working PEM fuel cell cathode. Electrocatalysis. 2017;8(3):235-244.
  • 40. Liu HJ, Li J, Xu XH, et al. Highly graphitic carbon black-supported platinum nanoparticle catalyst and its enhanced electrocatalytic activity for the oxygen reduction reaction in acidic medium. Electrochim Acta. 2013;93:25-31.
  • 41. Yan XD, Liu Y, Fan XR, Jia XL, Yu YH, Yang XP. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors. J Power Sources. 2014;248:745-751.
  • 42. Chakraborty I, Ghosh N, Ghosh D, Dubey BK, Pradhan D, Ghangrekar MM. Application of synthesized porous graphitic carbon nitride and its composite as excellent electrocatalysts in microbial fuel cell. Int J Hydrog Energ. 2020;45(55):31056-31069.
  • 43. Malko D, Lopes T, Ticianelli EA, Kucernak A. A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolyzed transition metal-N-C catalysts. J Power Sources. 2016;323:189-200.
  • 44. Rohendi D, Majlan EH, Mohamad AB, Shyuan LK, Raharjo J. Compari￾son of the performance of proton exchange membrane fuel cell (PEMFC) electrodes with different carbon powder content and meth￾ods of manufacture. Indonesian J Fundam Appl Chem. 2016;1(3):61- 66. [CrossRef] 45. Lefèvre M, Dodelet JP. Fe-based electrocatalysts made with micropo￾rous pristine carbon black supports for the reduction of oxygen in PEM fuel cells. Electrochim Acta. 2008;53(28):8269-8276. [CrossRef] 46. Takeshita T, Kamitaka Y, Shinozaki K, Kodama K, Morimoto Y. Evalu￾ation of ionomer coverage on Pt catalysts in polymer electrolyte membrane fuel cells by CO stripping voltammetry and its effect on oxygen reduction reaction activity. J Electroanal Chem. 2020;871. [CrossRef] 47. O’Brien TE, Herrera S, Langlois DA, et al. Impact of carbon support structure on the durability of PtCo electrocatalysts. J Electrochem Soc. 2021;168.
  • 48. Tian J, Birry L, Jaouen F, Dodelet JP. Fe-based catalysts for oxygen reduction in proton exchange membrane fuel cells with cyanamide as nitrogen precursor and/or pore-filler. Electrochim Acta. 2011;56(9):3276-3285.
There are 45 citations in total.

Details

Primary Language English
Subjects Micro and Nanosystems
Journal Section Research Articles
Authors

Ayşenur Öztürk Aydın

Ayşe Bayrakçeken Yurtcan

Publication Date December 31, 2023
Submission Date November 5, 2023
Acceptance Date December 5, 2023
Published in Issue Year 2023 Volume: 3 Issue: 2

Cite