Research Article
BibTex RIS Cite

ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ

Year 2020, Volume: 9 Issue: 1, 696 - 704, 30.01.2020
https://doi.org/10.28948/ngumuh.605314

Abstract










Bu çalışmada ısıl enerji depolama özellikli ve
biyobozunur esaslı FDM/çam kozalağı kompozitleri doğrudan emdirme yöntemi
kullanılarak hazırlanmış ve analiz edilmiştir. Palmitik asit ve miristik asit
FDM, doğal çam kozalağı, kompozit matrisi olarak çam kozalağı kullanılmıştır.  Üretilen kompozit malzemelerin morfolojik, termal
ve kimyasal yapısını incelemek için sırasıyla; taramalı elektron mikroskobu
(SEM), diferansiyel taramalı kalorimetre (DSC), Fourier dönüşümlü kızıl ötesi spektroskopisi
(FTIR) kullanılmıştır. Üretilen kompozitlerin termal dayanımı 100oC’de
test edilmiştir.
DSC analizleri sonucunda üretilen miristik asit ve
palmitik asit kompozitlerin erime noktası ve gizli ısı depolama kapasitelerinin
sırasıyla 51,82°C: 74,60J/g ve 59,36°C: 71,22J/g olduğu belirlenmiştir. Tüm analiz
sonuçlarına göre üretilen FDM/çam kozalağı kompozitlerinin ısıl enerji depolama
uygulamaları için uygun bir enerji depolama materyali olduğu belirlenmiştir.

References

  • [1] SARI, A., ALKAN, C., KARAİPEKLİ, A., & ÖNAL, A., “Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials”, Energy Conversion and Management, 49(2), 373-380, 2008[2] YUAN, Y., ZHANG, N., TAO, W., CAO, X., & HE, Y., “Fatty acids as phase change materials: a review”. Renewable and Sustainable Energy Reviews, 29, 482-498, 2014[3] WANG, L., & MENG, D., “Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage”, Applied Energy, 87(8), 2660-2665, 2010[4] ALKAN, C., & SARI, A., “Fatty acid/poly (methyl methacrylate)(PMMA) blends as form-stable phase change materials for latent heat thermal energy storage”, Solar energy, 82(2), 118-124, 2008[5] Lİ, M., KAO, H., WU, Z., & TAN, J., “Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials”, Applied energy, 88(5), 1606-1612, 2011[6] KARAİPEKLİ, A., & SARI, A., “Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage”, Solar Energy, 83(3), 323-332, 2009[7] CHEN, C., WANG, L., & HUANG, Y., “Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials”, Solar Energy Materials and Solar Cells, 92(11), 1382-1387, 2008[8] LI, M., WU, Z., & KAO, H., “Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials”, Applied energy, 88(9), 3125-3132, 2011.[9] FAUZI, H., METSELAAR, H. S., MAHLIA, T. I., SILAKHORI, M., & ONG, H. C., “Investigation of thermal characteristic of eutectic fatty acid/damar gum as a composite phase change material (CPCM)”, In Exergy for A Better Environment and Improved Sustainability 2, 607-616, 2018[10] SONG, Y., ZHANG, N., YUAN, Y., YANG, L., & CAO, X., “Prediction of the solid effective thermal conductivity of fatty acid/carbon material composite phase change materials based on fractal theory”, Energy, 170, 752-762, 2019[11] KONUKLU, Y., ERSOY, O., ERZİN, F., & TORAMAN, Y. Ö., “Experimental study on preparation of lauric acid/microwave-modified diatomite phase change material composites”, Solar Energy Materials and Solar Cells, 194, 89-94, 2019[12] KONUKLU, Y., ERZİN, F., AKAR, H. B., & TURAN, A. M., “Cellulose-based myristic acid composites for thermal energy storage applications”, Solar Energy Materials and Solar Cells, 193, 85-91, 2019[13] LIANG, J., ZHIMENG, L., YE, Y., YANJUN, W., JINGXIN, L., & CHANGLIN, Z., “Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage”, Energy and Buildings, 171, 88-99, 2018[14] YANG, H., WANG, Y., YU, Q., CAO, G., YANG, R., KE, J., ... & WANG, C., “Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage”, Applied energy, 212, 455-464, 2018.[15] MA, L., WANG, Q., & LI, L., “Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage”, Solar Energy Materials and Solar Cells, 194, 215-221, 2019.[16] LU, X., HUANG, J., WONG, W. Y., & QU, J. P., “A novel bio-based polyurethane/wood powder composite as shape-stable phase change material with high relative enthalpy efficiency for solar thermal energy storage”, Solar Energy Materials and Solar Cells, 200, 109987, 2019.[17] MATHİS, D., BLANCHET, P., LANDRY, V., & LAGİÈRE, P., “Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage”, Green Energy & Environment, 4(1), 56-65, 2019[18] GUO, X., CAO, J., PENG, Y., & LİU, R., “Incorporation of microencapsulated dodecanol into wood flour/high-density polyethylene composite as a phase change material for thermal energy storage”, Materials & Design, 89,1325-1334, 2016[19] Lİ, J., XUE, P., DİNG, W., HAN, J., & SUN, G., “Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage”, Solar Energy Materials and Solar Cells, 93(10), 1761-1767, 2009[20] JAMEKHORSHİD, A., SADRAMELİ, S. M., BARZİN, R., & FARİD, M. M., “Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage”, Applied Thermal Engineering, 112, 82-88, 2017[21] ALTUNDOĞAN, H. S., TOPDEMİR, A., ÇAKMAK, M., & BAHAR, N., “Hardness removal from waters by using citric acid modified pine cone”, Journal of the Taiwan Institute of Chemical Engineers, 58, s219-225, 2016[22] MOHAMMADİ, A. S., SARDARA, M., MOHAMMADİB, A., AZİMİA, F., & NURİEH, N., “Equilibrium and Kinetic Studies on the Adsorption of Acid Yellow 36 Dye by Pinecone. Archives of Hygiene Sciences”, 2(4), 158-164, 2013[23] FELDMAN, D., SHAPİRO, M. M., BANU, D., & FUKS, C. J, “Fatty acids and their mixtures as phase-change materials for thermal energy storage”, Solar energy materials, 18(3-4), 201-216, 1989[24] HASAN, A., & SAYİGH, A. A., “Some fatty acids as phase-change thermal energy storage materials”, Renewable energy, 4(1), 69-76, 1994
Year 2020, Volume: 9 Issue: 1, 696 - 704, 30.01.2020
https://doi.org/10.28948/ngumuh.605314

Abstract

References

  • [1] SARI, A., ALKAN, C., KARAİPEKLİ, A., & ÖNAL, A., “Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials”, Energy Conversion and Management, 49(2), 373-380, 2008[2] YUAN, Y., ZHANG, N., TAO, W., CAO, X., & HE, Y., “Fatty acids as phase change materials: a review”. Renewable and Sustainable Energy Reviews, 29, 482-498, 2014[3] WANG, L., & MENG, D., “Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage”, Applied Energy, 87(8), 2660-2665, 2010[4] ALKAN, C., & SARI, A., “Fatty acid/poly (methyl methacrylate)(PMMA) blends as form-stable phase change materials for latent heat thermal energy storage”, Solar energy, 82(2), 118-124, 2008[5] Lİ, M., KAO, H., WU, Z., & TAN, J., “Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials”, Applied energy, 88(5), 1606-1612, 2011[6] KARAİPEKLİ, A., & SARI, A., “Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage”, Solar Energy, 83(3), 323-332, 2009[7] CHEN, C., WANG, L., & HUANG, Y., “Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials”, Solar Energy Materials and Solar Cells, 92(11), 1382-1387, 2008[8] LI, M., WU, Z., & KAO, H., “Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials”, Applied energy, 88(9), 3125-3132, 2011.[9] FAUZI, H., METSELAAR, H. S., MAHLIA, T. I., SILAKHORI, M., & ONG, H. C., “Investigation of thermal characteristic of eutectic fatty acid/damar gum as a composite phase change material (CPCM)”, In Exergy for A Better Environment and Improved Sustainability 2, 607-616, 2018[10] SONG, Y., ZHANG, N., YUAN, Y., YANG, L., & CAO, X., “Prediction of the solid effective thermal conductivity of fatty acid/carbon material composite phase change materials based on fractal theory”, Energy, 170, 752-762, 2019[11] KONUKLU, Y., ERSOY, O., ERZİN, F., & TORAMAN, Y. Ö., “Experimental study on preparation of lauric acid/microwave-modified diatomite phase change material composites”, Solar Energy Materials and Solar Cells, 194, 89-94, 2019[12] KONUKLU, Y., ERZİN, F., AKAR, H. B., & TURAN, A. M., “Cellulose-based myristic acid composites for thermal energy storage applications”, Solar Energy Materials and Solar Cells, 193, 85-91, 2019[13] LIANG, J., ZHIMENG, L., YE, Y., YANJUN, W., JINGXIN, L., & CHANGLIN, Z., “Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage”, Energy and Buildings, 171, 88-99, 2018[14] YANG, H., WANG, Y., YU, Q., CAO, G., YANG, R., KE, J., ... & WANG, C., “Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage”, Applied energy, 212, 455-464, 2018.[15] MA, L., WANG, Q., & LI, L., “Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage”, Solar Energy Materials and Solar Cells, 194, 215-221, 2019.[16] LU, X., HUANG, J., WONG, W. Y., & QU, J. P., “A novel bio-based polyurethane/wood powder composite as shape-stable phase change material with high relative enthalpy efficiency for solar thermal energy storage”, Solar Energy Materials and Solar Cells, 200, 109987, 2019.[17] MATHİS, D., BLANCHET, P., LANDRY, V., & LAGİÈRE, P., “Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage”, Green Energy & Environment, 4(1), 56-65, 2019[18] GUO, X., CAO, J., PENG, Y., & LİU, R., “Incorporation of microencapsulated dodecanol into wood flour/high-density polyethylene composite as a phase change material for thermal energy storage”, Materials & Design, 89,1325-1334, 2016[19] Lİ, J., XUE, P., DİNG, W., HAN, J., & SUN, G., “Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage”, Solar Energy Materials and Solar Cells, 93(10), 1761-1767, 2009[20] JAMEKHORSHİD, A., SADRAMELİ, S. M., BARZİN, R., & FARİD, M. M., “Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage”, Applied Thermal Engineering, 112, 82-88, 2017[21] ALTUNDOĞAN, H. S., TOPDEMİR, A., ÇAKMAK, M., & BAHAR, N., “Hardness removal from waters by using citric acid modified pine cone”, Journal of the Taiwan Institute of Chemical Engineers, 58, s219-225, 2016[22] MOHAMMADİ, A. S., SARDARA, M., MOHAMMADİB, A., AZİMİA, F., & NURİEH, N., “Equilibrium and Kinetic Studies on the Adsorption of Acid Yellow 36 Dye by Pinecone. Archives of Hygiene Sciences”, 2(4), 158-164, 2013[23] FELDMAN, D., SHAPİRO, M. M., BANU, D., & FUKS, C. J, “Fatty acids and their mixtures as phase-change materials for thermal energy storage”, Solar energy materials, 18(3-4), 201-216, 1989[24] HASAN, A., & SAYİGH, A. A., “Some fatty acids as phase-change thermal energy storage materials”, Renewable energy, 4(1), 69-76, 1994
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Others
Authors

Yeliz Konuklu 0000-0002-6788-3114

Publication Date January 30, 2020
Submission Date August 14, 2019
Acceptance Date December 10, 2019
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

APA Konuklu, Y. (2020). ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 696-704. https://doi.org/10.28948/ngumuh.605314
AMA Konuklu Y. ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ. NOHU J. Eng. Sci. January 2020;9(1):696-704. doi:10.28948/ngumuh.605314
Chicago Konuklu, Yeliz. “ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 1 (January 2020): 696-704. https://doi.org/10.28948/ngumuh.605314.
EndNote Konuklu Y (January 1, 2020) ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 1 696–704.
IEEE Y. Konuklu, “ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ”, NOHU J. Eng. Sci., vol. 9, no. 1, pp. 696–704, 2020, doi: 10.28948/ngumuh.605314.
ISNAD Konuklu, Yeliz. “ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/1 (January 2020), 696-704. https://doi.org/10.28948/ngumuh.605314.
JAMA Konuklu Y. ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ. NOHU J. Eng. Sci. 2020;9:696–704.
MLA Konuklu, Yeliz. “ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 1, 2020, pp. 696-04, doi:10.28948/ngumuh.605314.
Vancouver Konuklu Y. ISIL ENERJİ DEPOLAMA UYGULAMALARI İÇİN BİYOBOZUNUR ESASLI FAZ DEĞİŞTİREN MADDE/ÇAM KOZALAĞI KOMPOZİTLERİNİN ÜRETİLMESİ. NOHU J. Eng. Sci. 2020;9(1):696-704.

download