Research Article
BibTex RIS Cite

Investigating the width effect on energy gaps of electrodes in boron arsenide based nano-transistors, a DFT study

Year 2024, Volume: 13 Issue: 1, 60 - 64, 15.01.2024
https://doi.org/10.28948/ngumuh.1310492

Abstract

This study deals with electronic properties of Boron Arsenide nanoribbons using Density function theory (DFT) calculations. Under specific conditions, nanoribbons can be used as Nano-transistors. It is feasible to modify nanoribbons' electronic properties, such as bandgap and conductivity, by varying their width and edge shape. Source, drain, and gate are basic parts of a conventional field-effect transistor (FET). The channel's conductivity can be changed by applying a voltage to the gate electrode. In current research, Boron Arsenide nanoribbons has been investigated as lead electrode of a transistor and stability of the sheet has been confirmed by positive phonon vibrational modes. Utilizing the band structure spectrum, band gap as an electronic property is measured and reported. Different width values for electrodes have been considered and it has represented that the band gap is size dependent and increasing in ribbon’s size to bulk structure, results in decrements in band gap energy value

References

  • A. K. Geim, and K. S. Novoselov, The Rise of Graphene. Nature Materials, 6, 183- 191, 2007. https://doi.org/10.1038/nmat1849.
  • L. Song et al., Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett. 10, 3209- 3215, 2010. https://doi. org/ 10.1021/nl1022139.
  • J.A Wilson and A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical, and structural properties, Advances in Physics, 18:73, 193335, 1969. https://doi.org/ 10.1080/00018736900101307.
  • S. Manzeli, D. Ovchinnikov and D. Pasquier, 2D transition metal dichalcogenides. Nat Rev Mater, 2, 17033, 2017. https://doi.org/10.1038/natrevmats.20 17.33.
  • A. Zhou et al., From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. J Adv Ceram 10, 1194–1242, 2021. https://doi.org/10.1007/ s40145-021 0535-5.
  • M. Xu, T. Liang, M. Shi, and H. Chen, Chemical Reviews, 113 (5), 3766-3798, 2013. https://doi.org/ 10.1021/cr300263a.
  • M. Mathew et al., A review on mechanisms and recent developments in p-n heterojunctions of 2D materials for applications. J Mater Sci 56, 9575–9604, 2021. https://doi.org/10.1007/s10853-021-05884-4
  • P. Miro, M. Audiffred, and T. Heine, An Atlas of Two-Dimensional ́ Materials. Chem. Soc. Rev. 43, 6537−6554, 2014. https://doi.org/10.1039/C4CS00102 H
  • V.S. Pratik, T. Anjana, T. Ranjit and S.R. Chandra, Nanoribbons of 2D materials: A review on emerging trends, recent developments and future perspectives, Coordination Chemistry Reviews, 453, 214335,2022. https://doi.org/10.1016/j.ccr.2021.214335.
  • S. Zhang et al., Atomically Thin Arsenene and Antimonene: Semimetal- Semiconductor and IndirectDirect Band-Gap Transitions. Angewandte. Chemie, Int. Ed. 54, 3112− 3115, 2015. https://doi .org/10.1002/anie.201411246
  • S. Zhang et al., Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. Nano Lett. 17, 3434−3440 2017. https://doi.org/10.1021/acs.nanolett.7b00297
  • F. Xia, D. B. Farmer, Y. M. Lin and P. Avouris, Graphene Field Effect Transistors with High on/off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett. 10, 715718, 2010. https:// doi.org/10.1021/nl9039636
  • G. He, et al. Conduction Mechanisms in CVD-Grown Monolayer MoS2 Transistors: From Variable-Range Hopping to Velocity Saturation. Nano Lett. 15, 5052−5058, 2015. https://doi.org/10.1021/acs.nanolett .5b01159
  • M. Kamaraj and V. Subramanian, Exploring Multifunctional Applications of Hexagonal Boron Arsenide Sheet: A DFT Study ACS Omega, 3, 9533-9543, 2018. https://doi.org/10.1021/acsomega.8b0094 6.
  • H. Shan., Q. He, X. Luo and Y. Zheng, First- Principles Calculations of Monolayer h-BN Nanosheets and Nanoribbons with Ultrahigh Phonon-Limited Hole Mobility for Wide Band Gap P-Channel Transistors. The Journal of Physical Chemistry C, 127, 9278-9286, 2023. https://doi.org/10.1021/acs .jpcc.3c00349
  • J. Cao, et al., On functional boron nitride: Electronic structures and thermal properties, Materials Today Electronics, 2, 100005, 2022. https://doi.org/10.101 6/j.mtelec.2022.100005.
  • T. Miao., M. Xiang, D. Li, X. Wang, Electrical and thermal transport properties of high crystalline PdTe2 nanoribbons under a strong magnetic field – Nanoscale, 14, 10101-10107, 2022. https://doi.org/10 .1039/D2NR02049A
  • D. Yulan et al., First-principal prediction of the electronic property and carrier mobility in boron arsenide nanotubes and nanoribbons. Journal of Applied Physics 28, 124303, 2019. https://doi.org/10 .1063/1.5110868
  • N.M. Díez et al., Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au (111) ACS Nano, 11, 11661-11668, 2017. https://doi.org/10.1021/acsnano.7b067 65.
  • N.R. Knøsgaard, and K.S. Thygesen, Representing individual electronic states for machine learning GW band structures of 2D materials. Nat Commun 13, 468, 2022. https://doi.org/10.1038/s41467-022-281 22-0.
  • W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140.A1133, 1965. https://doi.org/10.1103/Phys Rev.140.A1133
  • N. Merino-Díez, et al., Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111). ACS nano, 11, 11661-11668. https://doi.org/10.1021/acsnano.7b06765
  • G. Kalosakas, N.N. Lathiotakis, and K. Papagelis, Width dependent elastic properties of graphene nanoribbons. Materials, 14, 5042, 2021. https://doi. org/10.3390/ma14175042
  • S. Dutta, and S. K. Pati, Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry, 20, 8207-8223, 2010. https://doi.org/10. 1039/C0JM00261E
  • B. Zeng et al., First-principles prediction of the electronic structure and carrier mobility in hexagonal boron phosphide sheet and nanoribbons. The Journal of Physical Chemistry C, 120(43), 25037-25042, 2016. https://doi.org/10.1021/acs.jpcc.6b07048

Bor arsenit bazlı nano-transistörlerde elektrot genişliğinin enerji aralığı üzerindeki etkisinin incelenmesi, bir DFT çalışması

Year 2024, Volume: 13 Issue: 1, 60 - 64, 15.01.2024
https://doi.org/10.28948/ngumuh.1310492

Abstract

Bu çalışma, Yoğunluk Fonksiyon Teorisi (DFT) hesaplamalarını kullanarak Boron Arsenit nanoşeritlerin elektronik özellikleri araştırılmıştır. Belirli koşullar altında, nanoşeritler Nano-transistör olarak kullanılmaktadır. Şeritlerin genişliği ve kenar şeklini değiştirerek, nanoşeritlerin bant aralığı ve iletkenliği gibi elektronik özellikleri değiştirilebilir. Source, drain, ve gate, geleneksel bir alan etkili transistörün (FET) temel parçaları olarak tanımlanır. Kanalın iletkenliği, kapı elektroduna bir gerilim uygulayarak değişmektedir. Bu araştırmada Boron Arsenide nanoşeritleri bir transistörün lead elektrotu olarak kullanımı incelenmiştir ve tabakaların kararlılıkları pozitif fonon titreşim modları ile doğrulanmıştır. Band yapısı spektrumu kullanılarak, elektronik özelliği olarak bant aralığı ölçülüp, rapor edilmiştir. Elektrotlar için farklı genişlik değerleri kullanarak bant aralığının boyuta bağlı olduğu ve şeridin boyutunun artmasıyla bant aralığı enerji değerinde azalmaya yol açtığı gösterilmiştir.

References

  • A. K. Geim, and K. S. Novoselov, The Rise of Graphene. Nature Materials, 6, 183- 191, 2007. https://doi.org/10.1038/nmat1849.
  • L. Song et al., Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett. 10, 3209- 3215, 2010. https://doi. org/ 10.1021/nl1022139.
  • J.A Wilson and A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical, and structural properties, Advances in Physics, 18:73, 193335, 1969. https://doi.org/ 10.1080/00018736900101307.
  • S. Manzeli, D. Ovchinnikov and D. Pasquier, 2D transition metal dichalcogenides. Nat Rev Mater, 2, 17033, 2017. https://doi.org/10.1038/natrevmats.20 17.33.
  • A. Zhou et al., From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. J Adv Ceram 10, 1194–1242, 2021. https://doi.org/10.1007/ s40145-021 0535-5.
  • M. Xu, T. Liang, M. Shi, and H. Chen, Chemical Reviews, 113 (5), 3766-3798, 2013. https://doi.org/ 10.1021/cr300263a.
  • M. Mathew et al., A review on mechanisms and recent developments in p-n heterojunctions of 2D materials for applications. J Mater Sci 56, 9575–9604, 2021. https://doi.org/10.1007/s10853-021-05884-4
  • P. Miro, M. Audiffred, and T. Heine, An Atlas of Two-Dimensional ́ Materials. Chem. Soc. Rev. 43, 6537−6554, 2014. https://doi.org/10.1039/C4CS00102 H
  • V.S. Pratik, T. Anjana, T. Ranjit and S.R. Chandra, Nanoribbons of 2D materials: A review on emerging trends, recent developments and future perspectives, Coordination Chemistry Reviews, 453, 214335,2022. https://doi.org/10.1016/j.ccr.2021.214335.
  • S. Zhang et al., Atomically Thin Arsenene and Antimonene: Semimetal- Semiconductor and IndirectDirect Band-Gap Transitions. Angewandte. Chemie, Int. Ed. 54, 3112− 3115, 2015. https://doi .org/10.1002/anie.201411246
  • S. Zhang et al., Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. Nano Lett. 17, 3434−3440 2017. https://doi.org/10.1021/acs.nanolett.7b00297
  • F. Xia, D. B. Farmer, Y. M. Lin and P. Avouris, Graphene Field Effect Transistors with High on/off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett. 10, 715718, 2010. https:// doi.org/10.1021/nl9039636
  • G. He, et al. Conduction Mechanisms in CVD-Grown Monolayer MoS2 Transistors: From Variable-Range Hopping to Velocity Saturation. Nano Lett. 15, 5052−5058, 2015. https://doi.org/10.1021/acs.nanolett .5b01159
  • M. Kamaraj and V. Subramanian, Exploring Multifunctional Applications of Hexagonal Boron Arsenide Sheet: A DFT Study ACS Omega, 3, 9533-9543, 2018. https://doi.org/10.1021/acsomega.8b0094 6.
  • H. Shan., Q. He, X. Luo and Y. Zheng, First- Principles Calculations of Monolayer h-BN Nanosheets and Nanoribbons with Ultrahigh Phonon-Limited Hole Mobility for Wide Band Gap P-Channel Transistors. The Journal of Physical Chemistry C, 127, 9278-9286, 2023. https://doi.org/10.1021/acs .jpcc.3c00349
  • J. Cao, et al., On functional boron nitride: Electronic structures and thermal properties, Materials Today Electronics, 2, 100005, 2022. https://doi.org/10.101 6/j.mtelec.2022.100005.
  • T. Miao., M. Xiang, D. Li, X. Wang, Electrical and thermal transport properties of high crystalline PdTe2 nanoribbons under a strong magnetic field – Nanoscale, 14, 10101-10107, 2022. https://doi.org/10 .1039/D2NR02049A
  • D. Yulan et al., First-principal prediction of the electronic property and carrier mobility in boron arsenide nanotubes and nanoribbons. Journal of Applied Physics 28, 124303, 2019. https://doi.org/10 .1063/1.5110868
  • N.M. Díez et al., Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au (111) ACS Nano, 11, 11661-11668, 2017. https://doi.org/10.1021/acsnano.7b067 65.
  • N.R. Knøsgaard, and K.S. Thygesen, Representing individual electronic states for machine learning GW band structures of 2D materials. Nat Commun 13, 468, 2022. https://doi.org/10.1038/s41467-022-281 22-0.
  • W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140.A1133, 1965. https://doi.org/10.1103/Phys Rev.140.A1133
  • N. Merino-Díez, et al., Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111). ACS nano, 11, 11661-11668. https://doi.org/10.1021/acsnano.7b06765
  • G. Kalosakas, N.N. Lathiotakis, and K. Papagelis, Width dependent elastic properties of graphene nanoribbons. Materials, 14, 5042, 2021. https://doi. org/10.3390/ma14175042
  • S. Dutta, and S. K. Pati, Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry, 20, 8207-8223, 2010. https://doi.org/10. 1039/C0JM00261E
  • B. Zeng et al., First-principles prediction of the electronic structure and carrier mobility in hexagonal boron phosphide sheet and nanoribbons. The Journal of Physical Chemistry C, 120(43), 25037-25042, 2016. https://doi.org/10.1021/acs.jpcc.6b07048
There are 25 citations in total.

Details

Primary Language English
Subjects Electronics
Journal Section Research Articles
Authors

Nilüfer Ertekin 0000-0003-3955-2489

Early Pub Date January 8, 2024
Publication Date January 15, 2024
Submission Date June 6, 2023
Acceptance Date October 18, 2023
Published in Issue Year 2024 Volume: 13 Issue: 1

Cite

APA Ertekin, N. (2024). Investigating the width effect on energy gaps of electrodes in boron arsenide based nano-transistors, a DFT study. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 60-64. https://doi.org/10.28948/ngumuh.1310492
AMA Ertekin N. Investigating the width effect on energy gaps of electrodes in boron arsenide based nano-transistors, a DFT study. NOHU J. Eng. Sci. January 2024;13(1):60-64. doi:10.28948/ngumuh.1310492
Chicago Ertekin, Nilüfer. “Investigating the Width Effect on Energy Gaps of Electrodes in Boron Arsenide Based Nano-Transistors, a DFT Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 1 (January 2024): 60-64. https://doi.org/10.28948/ngumuh.1310492.
EndNote Ertekin N (January 1, 2024) Investigating the width effect on energy gaps of electrodes in boron arsenide based nano-transistors, a DFT study. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 1 60–64.
IEEE N. Ertekin, “Investigating the width effect on energy gaps of electrodes in boron arsenide based nano-transistors, a DFT study”, NOHU J. Eng. Sci., vol. 13, no. 1, pp. 60–64, 2024, doi: 10.28948/ngumuh.1310492.
ISNAD Ertekin, Nilüfer. “Investigating the Width Effect on Energy Gaps of Electrodes in Boron Arsenide Based Nano-Transistors, a DFT Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/1 (January 2024), 60-64. https://doi.org/10.28948/ngumuh.1310492.
JAMA Ertekin N. Investigating the width effect on energy gaps of electrodes in boron arsenide based nano-transistors, a DFT study. NOHU J. Eng. Sci. 2024;13:60–64.
MLA Ertekin, Nilüfer. “Investigating the Width Effect on Energy Gaps of Electrodes in Boron Arsenide Based Nano-Transistors, a DFT Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 1, 2024, pp. 60-64, doi:10.28948/ngumuh.1310492.
Vancouver Ertekin N. Investigating the width effect on energy gaps of electrodes in boron arsenide based nano-transistors, a DFT study. NOHU J. Eng. Sci. 2024;13(1):60-4.

23135