Research Article
BibTex RIS Cite

Elektron-Pozitron Çiftinin İyonlaşma Enerji Kaybının Çoklu-GeV Bölgesinde Belirlenmesi

Year 2023, Volume: 13 Issue: 2, 154 - 162, 31.12.2023
https://doi.org/10.54370/ordubtd.1293561

Abstract

Chudakov etkisi nedeniyle iyonlaşma enerji kaybının bastırılması, GEANT4 simülasyon paketinden elde edilen elektron-pozitron çiftlerinin açılma açıları kullanılarak tartışılmıştır. 1-178 GeV arasındaki foton enerjileri için beklenen Borsellino ve Olsen açıları gösterilmiş ve simüle edilen açılma açıları ile karşılaştırılmıştır. Elektron-pozitron çiftinin benzetimi yapılan açılma açıları, 30 GeV'in altındaki enerjiler için Borsellino açısı ile çoğunlukla uyumludur. İyonizasyon-bastırma etkisi bilinen teorik yaklaşımlar kullanılarak yeniden üretilmiş ve ilgili simülasyon sonuçları ile karşılaştırılmıştır. Elde edilen sonuçlar, GEANT4 simülasyon paketinin teori-deney tutarlılığı sağlayan bir veri seti ile Chudakov etkisini simülasyon ortamına uyarlamak için uygun olduğunu göstermiştir.

References

  • Agostinelli, S., et al., (2003). Geant4—a simulation toolkit. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/s0168-9002(03)01368-8
  • Berestetskii V. B., & Geshkenbain B. V. (1957). Ionizational slowing down of high-energy electron positron pairs. Sov. Phys. JETP, 4(609). https://www.osti.gov/biblio/4350183
  • Borsellino, A. (1953). Momentum transfer and angle of divergence of pairs produced by photons. The Physical Review, 89(5), 1023–1025. https://doi.org/10.1103/physrev.89.1023
  • Burkhardt, G. H. (1958). The suppression effect in ionization by fast electron pairs. Il Nuovo Cimento, 9(3), 375–399. https://doi.org/10.1007/bf02725095
  • Chudakov, A. E. (1955). On an ionization effect associated with observation of electron-positron pairs at very high energy. Izv. Akad. Nauk. USSR, Ser. Fiz., 19(651).
  • Iwadare, J. (1958). Suppression effect of the ionization produced by electron-positron pairs of extremely high energy. The Philosophical Magazine, 3(31), 680–691. https://doi.org/10.1080/14786435808237003
  • Geant4 Collaboration (2023). GEANT4 Physics Reference Manual (version: 10.07). Retrieved March 15, 2023 from http://geant4.cern.ch
  • Mito, I., & Ezawa, H. (1957). Ionization loss near the origin of an electron pair of very high energy. Progress of Theoretical Physics, 18(4), 437–447. https://doi.org/10.1143/ptp.18.437
  • Olsen, H. (1963). Opening angles of electron-positron pairs. The Physical Review, 131(1), 406–415. https://doi.org/10.1103/physrev.131.406
  • Perkins, D. H. (1955). Ionization at the origin of electron Pairs, and the lifetime of the neutral pion. The London Edinburgh and Dublin Philosophical Magazine and Journal of Science, 46(381), 1146–1148. https://doi.org/10.1080/14786441008521131
  • Shulʼga, N. F., & Trofymenko, S. V. (2014). Anti-Chudakov effect in high-energy electron–positron pair ionization loss in thin target. Physics Letters. A, 378(4), 315–318. https://doi.org/10.1016/j.physleta.2013.11.026
  • Thomsen, H. D., & Uggerhøj, U. I. (2011). Measurements and theories of the King–Perkins–Chudakov effect. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 269(17), 1919–1924. https://doi.org/10.1016/j.nimb.2011.05.019
  • Trofymenko, S. V., & Shulʼga, N. F. (2013). On ionization energy losses of high-energy electron–positron pair in thin targets. Physics Letters. A, 377(37), 2265–2269. https://doi.org/10.1016/j.physleta.2013.06.044
  • Trofymenko, S. V., & Shul’ga, N. F. (2015). The influence of non-parallelism of electron and positron velocities upon high-energy e+e− pair ionization loss in thin plate. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 355, 140–143. https://doi.org/10.1016/j.nimb.2015.02.041
  • Trofymenko, S. V., & Shul’ga, N. F. (2017). Anomalous ionization loss of high-energy e+e− pairs in thin targets. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 402, 44–48. https://doi.org/10.1016/j.nimb.2017.03.017
  • Trofymenko, S. V., & Shul’ga, N. F. (2020). Energy loss by relativistic electron ensembles due to coherent excitation and ionization of atoms. Physical Review Accelerators and Beams, 23(8), 084501. https://doi.org/10.1103/physrevaccelbeams.23.084501
  • Trofymenko, S. V. (2023). Chudakov effect for the most probable value of high-energy electron–positron pair ionization loss in thin targets. The European Physical Journal. C, Particles and Fields, 83(1). https://doi.org/10.1140/epjc/s10052-023-11181-y
  • Virkus, T., Thomsen, H. D., Uggerhøj, E., Uggerhøj, U. I., Ballestrero, S., Sona, P., Mangiarotti, A., Ketel, T. J., Dizdar, A., Kartal, S., Pagliarone, C., & CERN NA63 Collaboration. (2008). Direct measurement of the Chudakov effect. Physical Review Letters, 100(16), 164802. https://doi.org/10.1103/PhysRevLett.100.164802
  • Wolter, W. & Miesowich, M. (1956). Ionization at the origin of an electron pair of very high energy. Nuovo Cimento, 4(648). https://link.springer.com/content/pdf/10.1007/BF02745390.pdf
  • Yekutieli, G. (1957). Ionization at the origin of high energy electron positron pairs. Il Nuovo Cimento, 5(6), 1381–1387. https://doi.org/10.1007/bf02856030
  • Zieliński, I. P. (1985). On the possibility of the electronic measurement of the King-Perkins-Chudakov effect for electron pairs using a multilayer silicon detector. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 238(2–3), 562–563. https://doi.org/10.1016/0168-9002(85)90502-9

Determination of Ionization Energy Loss of Electron-Positron Pair in Multi-GeV Region

Year 2023, Volume: 13 Issue: 2, 154 - 162, 31.12.2023
https://doi.org/10.54370/ordubtd.1293561

Abstract

The suppression of ionization energy loss owing to the Chudakov effect is discussed using the opening angles of the electron-positron pairs from the GEANT4 simulation package. The expected Borsellino and Olsen angles for photon energies between 1-178 GeV were presented and compared with the simulated opening angles. The simulated opening angles of the electron-positron pair are mostly compatible with the Borsellino angle for energies below 30 GeV. The ionization-suppression effect was reproduced using known theoretical approaches and compared with the corresponding simulated results. The results showed that the GEANT4 simulation package is suitable for adopting the Chudakov effect in a simulation environment, with a dataset that provides theory-experiment consistency.

References

  • Agostinelli, S., et al., (2003). Geant4—a simulation toolkit. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/s0168-9002(03)01368-8
  • Berestetskii V. B., & Geshkenbain B. V. (1957). Ionizational slowing down of high-energy electron positron pairs. Sov. Phys. JETP, 4(609). https://www.osti.gov/biblio/4350183
  • Borsellino, A. (1953). Momentum transfer and angle of divergence of pairs produced by photons. The Physical Review, 89(5), 1023–1025. https://doi.org/10.1103/physrev.89.1023
  • Burkhardt, G. H. (1958). The suppression effect in ionization by fast electron pairs. Il Nuovo Cimento, 9(3), 375–399. https://doi.org/10.1007/bf02725095
  • Chudakov, A. E. (1955). On an ionization effect associated with observation of electron-positron pairs at very high energy. Izv. Akad. Nauk. USSR, Ser. Fiz., 19(651).
  • Iwadare, J. (1958). Suppression effect of the ionization produced by electron-positron pairs of extremely high energy. The Philosophical Magazine, 3(31), 680–691. https://doi.org/10.1080/14786435808237003
  • Geant4 Collaboration (2023). GEANT4 Physics Reference Manual (version: 10.07). Retrieved March 15, 2023 from http://geant4.cern.ch
  • Mito, I., & Ezawa, H. (1957). Ionization loss near the origin of an electron pair of very high energy. Progress of Theoretical Physics, 18(4), 437–447. https://doi.org/10.1143/ptp.18.437
  • Olsen, H. (1963). Opening angles of electron-positron pairs. The Physical Review, 131(1), 406–415. https://doi.org/10.1103/physrev.131.406
  • Perkins, D. H. (1955). Ionization at the origin of electron Pairs, and the lifetime of the neutral pion. The London Edinburgh and Dublin Philosophical Magazine and Journal of Science, 46(381), 1146–1148. https://doi.org/10.1080/14786441008521131
  • Shulʼga, N. F., & Trofymenko, S. V. (2014). Anti-Chudakov effect in high-energy electron–positron pair ionization loss in thin target. Physics Letters. A, 378(4), 315–318. https://doi.org/10.1016/j.physleta.2013.11.026
  • Thomsen, H. D., & Uggerhøj, U. I. (2011). Measurements and theories of the King–Perkins–Chudakov effect. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 269(17), 1919–1924. https://doi.org/10.1016/j.nimb.2011.05.019
  • Trofymenko, S. V., & Shulʼga, N. F. (2013). On ionization energy losses of high-energy electron–positron pair in thin targets. Physics Letters. A, 377(37), 2265–2269. https://doi.org/10.1016/j.physleta.2013.06.044
  • Trofymenko, S. V., & Shul’ga, N. F. (2015). The influence of non-parallelism of electron and positron velocities upon high-energy e+e− pair ionization loss in thin plate. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 355, 140–143. https://doi.org/10.1016/j.nimb.2015.02.041
  • Trofymenko, S. V., & Shul’ga, N. F. (2017). Anomalous ionization loss of high-energy e+e− pairs in thin targets. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 402, 44–48. https://doi.org/10.1016/j.nimb.2017.03.017
  • Trofymenko, S. V., & Shul’ga, N. F. (2020). Energy loss by relativistic electron ensembles due to coherent excitation and ionization of atoms. Physical Review Accelerators and Beams, 23(8), 084501. https://doi.org/10.1103/physrevaccelbeams.23.084501
  • Trofymenko, S. V. (2023). Chudakov effect for the most probable value of high-energy electron–positron pair ionization loss in thin targets. The European Physical Journal. C, Particles and Fields, 83(1). https://doi.org/10.1140/epjc/s10052-023-11181-y
  • Virkus, T., Thomsen, H. D., Uggerhøj, E., Uggerhøj, U. I., Ballestrero, S., Sona, P., Mangiarotti, A., Ketel, T. J., Dizdar, A., Kartal, S., Pagliarone, C., & CERN NA63 Collaboration. (2008). Direct measurement of the Chudakov effect. Physical Review Letters, 100(16), 164802. https://doi.org/10.1103/PhysRevLett.100.164802
  • Wolter, W. & Miesowich, M. (1956). Ionization at the origin of an electron pair of very high energy. Nuovo Cimento, 4(648). https://link.springer.com/content/pdf/10.1007/BF02745390.pdf
  • Yekutieli, G. (1957). Ionization at the origin of high energy electron positron pairs. Il Nuovo Cimento, 5(6), 1381–1387. https://doi.org/10.1007/bf02856030
  • Zieliński, I. P. (1985). On the possibility of the electronic measurement of the King-Perkins-Chudakov effect for electron pairs using a multilayer silicon detector. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 238(2–3), 562–563. https://doi.org/10.1016/0168-9002(85)90502-9
There are 21 citations in total.

Details

Primary Language English
Subjects Electrostatics and Electrodynamics
Journal Section Research Articles
Authors

Onur Buğra Kolcu 0000-0002-9177-1286

Early Pub Date December 29, 2023
Publication Date December 31, 2023
Submission Date May 6, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Kolcu, O. B. (2023). Determination of Ionization Energy Loss of Electron-Positron Pair in Multi-GeV Region. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 13(2), 154-162. https://doi.org/10.54370/ordubtd.1293561