Research Article
BibTex RIS Cite

Antiproliferative Effects of Boric Acid on Glioblastoma Cells via Endoplasmic Reticulum Stress-Related Proteins

Year 2024, Volume: 46 Issue: 2, 217 - 227, 18.03.2024
https://doi.org/10.20515/otd.1404026

Abstract

Endoplasmic reticulum (ER) stress is involved in the regulation of metabolic homeostasis and the pathophysiology of various cancers, including gliomas. Boron, a trace element for humans, has demonstrated potential anti-cancer properties in experimental and epidemiological studies. This study aims to investigate the effects of boric acid on cell viability, apoptosis and oxidant status via ER stress signaling in human glioblastoma (GBM) cells. The study evaluated the cytotoxic effect of boric acid (0–1600 µM) on U251 cell viability using MTT assay. Spectrophotometric measurements were performed to determine the levels of GRP78, ATF4, CHOP, cytochrome c, caspase 3, caspase 12, total oxidant status (TOS), total antioxidant status (TAS) and oxidative stress index (OSI) in boric acid-treated cells. Exposure of U251 cells to boric acid caused a concentration- and time-dependent decrease in cell viability. According to MTT analysis, the IC50 values of boric acid at 24, 48 and 72 hours were determined as 312.7 μM, 208.6 μM and 115.2 μM, respectively. Boric acid concentration-dependently increased the levels of cytochrome c, caspase 3 and caspase 12 in U251 cells. In U251 cells, cytochrome c levels increased approximately 3-fold, caspase 3 levels increased approximately 2-fold, and caspase 12 levels increased approximately 2-fold at a boric acid concentration of 312.7 μM. Additionally, boric acid treatment significantly increased TOS and OSI in U251 cells. Furthermore, GRP78 and ATF4 levels showed a concentration-dependent decrease in boric acid-treated cells. Conversely, boric acid increased CHOP levels in U251 cells in a concentration-dependent manner. In summary, boric acid induced apoptosis and oxidative stress by triggering ER stress in GBM cells. With these positive properties, boric acid may be a potential therapeutic agent in the treatment of GBM.

References

  • 1. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol. 2014;16(7):896-913.
  • 2. Stupp R, Hegi ME, van den Bent MJ, Mason WP, Weller M, Mirimanoff RO, Cairncross JG; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Changing paradigms--an update on the multidisciplinary management of malignant glioma. Oncologist. 2006;11(2):165-80.
  • 3. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro Oncol. 2016;18(suppl5):1-75.
  • 4. Alexander BM, Cloughesy TF. Adult Glioblastoma. J Clin Oncol. 2017 Jul 20;35(21):2402-2409.
  • 5. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.
  • 6. Aoyama-Ishiwatari S, Hirabayashi Y. Endoplasmic Reticulum-Mitochondria Contact Sites-Emerging Intracellular Signaling Hubs. Front Cell Dev Biol. 2021;9:653828.
  • 7. Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life. 2021;73(6):843-854.
  • 8. Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell's response to stress. Life Sci. 2019;226:156-163.
  • 9. Oakes SA. Endoplasmic Reticulum Stress Signaling in Cancer Cells. Am J Pathol. 2020;190(5):934-946.
  • 10. Zhang D, Wang F, Pang Y, Ke XX, Zhu S, Zhao E, Zhang K, Chen L, Cui H. Down-regulation of CHERP inhibits neuroblastoma cell proliferation and induces apoptosis through ER stress induction. Oncotarget. 2017;8(46):80956-80970.
  • 11. Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo). 2012;2012:857516.
  • 12. Dey S, Baird TD, Zhou D, Palam LR, Spandau DF, Wek RC. Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J Biol Chem. 2010;285(43):33165-33174.
  • 13. Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I. The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr Mol Med. 2016;16(6):533-44.
  • 14. Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther. 2023;251:108548.
  • 15. Hacioglu C, Tuncer C. Boric acid Increases Susceptibility to Chemotherapy by Targeting the Ferritinophagy Signaling Pathway in TMZ Resistant Glioblastoma Cells. Biol Trace Elem Res. 2023.
  • 16. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev. 2017;18(1):3-9.
  • 17. Chou YC, Chang MY, Wang MJ, Liu HC, Chang SJ, Harnod T, Hung CH, Lee HT, Shen CC, Chung JG. Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. Environ Toxicol. 2017;32(1):176-187.
  • 18. Chen YY, Chang YM, Wang KY, Chen PN, Hseu YC, Chen KM, Yeh KT, Chen CJ, Hsu LS. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ Toxicol. 2019;34(3):233-239.
  • 19. Kar F, Hacioğlu C, Kaçar S. The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways. Environ Toxicol. 2023;38(1):70-77.
  • 20. Pizzorno L. Nothing Boring About Boron. Integr Med (Encinitas). 2015;14(4):35-48.
  • 21. Barranco WT, Eckhert CD. Boric acid inhibits human prostate cancer cell proliferation. Cancer Lett. 2004;216(1):21-9.
  • 22. Hacioglu C, Kar F, Davran F, Tuncer C. Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells. Environ Toxicol. 2023;38(7):1690-1701.
  • 23. Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment? Mol Cancer Ther. 2003 Jun;2(6):573-80.
  • 24. Barranco WT, Kim DH, Stella SL Jr, Eckhert CD. Boric acid inhibits stored Ca2+ release in DU-145 prostate cancer cells. Cell Biol Toxicol. 2009;25(4):309-20.
  • 25. Scorei R, Ciubar R, Ciofrangeanu CM, Mitran V, Cimpean A, Iordachescu D. Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biol Trace Elem Res. 2008 ;122(3):197-205.
  • 26. Kahraman E, Göker E. Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway. J Trace Elem Med Biol. 2022;73:127043.
  • 27. Cabus U, Secme M, Kabukcu C, Cil N, Dodurga Y, Mete G, Fenkci IV. Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms. Gene. 2021;796-797:145799.
  • 28. Heidari F, Rabizadeh S, Mansournia MA, Mirmiranpoor H, Salehi SS, Akhavan S, Esteghamati A, Nakhjavani M. Inflammatory, oxidative stress and anti-oxidative markers in patients with endometrial carcinoma and diabetes. Cytokine. 2019;120:186-190.
  • 29. Liu Q, Yu M, Zhang T. Construction of Oxidative Stress-Related Genes Risk Model Predicts the Prognosis of Uterine Corpus Endometrial Cancer Patients. Cancers (Basel). 2022;14(22):5572.
  • 30. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167-197.
  • 31. Hacioglu C, Kar F, Kacar S, Sahinturk V, Kanbak G. High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line. Biol Trace Elem Res. 2020;193(2):400-409.
  • 32. Markouli M, Strepkos D, Papavassiliou AG, Piperi C. Targeting of endoplasmic reticulum (ER) stress in gliomas. Pharmacol Res. 2020;157:104823.
  • 33. Li Y, Ma H, Lu Y, Tan BJ, Xu L, Lawal TO, Mahady GB, Liu D. Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. Biomed Res Int. 2016;2016:2574637.
  • 34. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.
  • 35. Peñaranda Fajardo NM, Meijer C, Kruyt FA. The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. Biochem Pharmacol. 2016;118:1-8.
  • 36. Song S, Tan J, Miao Y, Li M, Zhang Q. Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol. 2017;232(11):2977-2984.
  • 37. Vellanki RN, Zhang L, Volchuk A. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration. PLoS One. 2013;8(1):e54060.
  • 38. Peñaranda-Fajardo NM, Meijer C, Liang Y, Dijkstra BM, Aguirre-Gamboa R, den Dunnen WFA, Kruyt FAE. ER stress and UPR activation in glioblastoma: identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation. Cell Death Dis. 2019;10(10):690.
  • 39. Zhang Y, Pusch S, Innes J, Sidlauskas K, Ellis M, Lau J, El-Hassan T, Aley N, Launchbury F, Richard-Loendt A, deBoer J, Chen S, Wang L, von Deimling A, Li N, Brandner S. Mutant IDH Sensitizes Gliomas to Endoplasmic Reticulum Stress and Triggers Apoptosis via miR-183-Mediated Inhibition of Semaphorin 3E. Cancer Res. 2019;79(19):4994-5007.

Borik Asidin Endoplazmik Retikulum Stresiyle İlgili Proteinler Aracılığıyla Glioblastoma Hücreleri Üzerindeki Antiproliferatif Etkileri

Year 2024, Volume: 46 Issue: 2, 217 - 227, 18.03.2024
https://doi.org/10.20515/otd.1404026

Abstract

Endoplazmik retikulum (ER) stresi, metabolizma homeostazının düzenlenmesinde ve gliomalar dahil çeşitli kanserlerin fizyopatolojisinde rol alır. İnsanlar için eser element olan bor, deneysel ve epidemiyolojik çalışmalarda potansiyel kanser karşıtı özellikler göstermiştir. Bu çalışma, borik asidin insan glioblastoma (GBM) hücrelerindeki ER stresi sinyalizasyonuyla hücre canlılığı, apoptoz ve oksidan durum üzerindeki etkilerini araştırmayı amaçlamaktadır. Çalışma, MTT analizi kullanılarak borik asidin (0-1600 µM) U251 hücre canlılığı üzerindeki sitotoksik etkisini değerlendirdi. Borik asitle tedavi edilen hücrelerde GRP78, ATF4, CHOP, sitokrom c, kaspaz 3, kaspaz 12, toplam oksidan durum (TOS), toplam antioksidan durum (TAS) ve oksidatif stres indeksi (OSI) seviyelerini belirlemek için spektrofotometrik ölçümler yapıldı. U251 hücrelerinin borik aside maruz bırakılması, hücre canlılığında konsantrasyon ve zaman bağımlı bir düşüşe neden oldu. MTT analizi göre, borik asidin 24, 48 ve 72 saat IC50 sırasıyla değerleri 312,7 μM, 208,6 μM ve 115,2 μM olarak belirlendi. Borik asit, U251 hücrelerinde sitokrom c, kaspaz 3 ve kaspaz 12 düzeylerini konsantrasyona bağlı olarak arttırdı. U251 hücrelerinde sitokrom c seviyeleri yaklaşık 3 katlık, kaspaz 3 seviyeleri yaklaşık 2 katlık ve kaspaz 12 seviyeleri yaklaşık 2 katlık artışla 312,7 μM borik asit konsantrasyonunda tespit edilmiştir. Ek olarak borik asit tedavisi, U251 hücrelerinde TOS ve OSI'yi önemli ölçüde artırdı. Ayrıca, GRP78 ve ATF4 seviyeleri borik asitle tedavi edilen hücrelerde konsantrasyona bağlı bir azalma gösterdi. Tersine borik asit, U251 hücrelerinde CHOP seviyelerini konsantrasyona bağlı bir şekilde arttırdı. Özetle, borik asit GBM hücrelerinde ER stresini tetikleyerek apoptozu ve oksidatif stresi indükledi. Bu olumlu özellikleriyle borik asit, GBM'nin tedavisinde potansiyel bir terapötik ajan olabilir.

References

  • 1. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol. 2014;16(7):896-913.
  • 2. Stupp R, Hegi ME, van den Bent MJ, Mason WP, Weller M, Mirimanoff RO, Cairncross JG; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Changing paradigms--an update on the multidisciplinary management of malignant glioma. Oncologist. 2006;11(2):165-80.
  • 3. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro Oncol. 2016;18(suppl5):1-75.
  • 4. Alexander BM, Cloughesy TF. Adult Glioblastoma. J Clin Oncol. 2017 Jul 20;35(21):2402-2409.
  • 5. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.
  • 6. Aoyama-Ishiwatari S, Hirabayashi Y. Endoplasmic Reticulum-Mitochondria Contact Sites-Emerging Intracellular Signaling Hubs. Front Cell Dev Biol. 2021;9:653828.
  • 7. Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life. 2021;73(6):843-854.
  • 8. Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell's response to stress. Life Sci. 2019;226:156-163.
  • 9. Oakes SA. Endoplasmic Reticulum Stress Signaling in Cancer Cells. Am J Pathol. 2020;190(5):934-946.
  • 10. Zhang D, Wang F, Pang Y, Ke XX, Zhu S, Zhao E, Zhang K, Chen L, Cui H. Down-regulation of CHERP inhibits neuroblastoma cell proliferation and induces apoptosis through ER stress induction. Oncotarget. 2017;8(46):80956-80970.
  • 11. Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo). 2012;2012:857516.
  • 12. Dey S, Baird TD, Zhou D, Palam LR, Spandau DF, Wek RC. Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J Biol Chem. 2010;285(43):33165-33174.
  • 13. Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I. The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr Mol Med. 2016;16(6):533-44.
  • 14. Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther. 2023;251:108548.
  • 15. Hacioglu C, Tuncer C. Boric acid Increases Susceptibility to Chemotherapy by Targeting the Ferritinophagy Signaling Pathway in TMZ Resistant Glioblastoma Cells. Biol Trace Elem Res. 2023.
  • 16. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev. 2017;18(1):3-9.
  • 17. Chou YC, Chang MY, Wang MJ, Liu HC, Chang SJ, Harnod T, Hung CH, Lee HT, Shen CC, Chung JG. Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. Environ Toxicol. 2017;32(1):176-187.
  • 18. Chen YY, Chang YM, Wang KY, Chen PN, Hseu YC, Chen KM, Yeh KT, Chen CJ, Hsu LS. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ Toxicol. 2019;34(3):233-239.
  • 19. Kar F, Hacioğlu C, Kaçar S. The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways. Environ Toxicol. 2023;38(1):70-77.
  • 20. Pizzorno L. Nothing Boring About Boron. Integr Med (Encinitas). 2015;14(4):35-48.
  • 21. Barranco WT, Eckhert CD. Boric acid inhibits human prostate cancer cell proliferation. Cancer Lett. 2004;216(1):21-9.
  • 22. Hacioglu C, Kar F, Davran F, Tuncer C. Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells. Environ Toxicol. 2023;38(7):1690-1701.
  • 23. Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment? Mol Cancer Ther. 2003 Jun;2(6):573-80.
  • 24. Barranco WT, Kim DH, Stella SL Jr, Eckhert CD. Boric acid inhibits stored Ca2+ release in DU-145 prostate cancer cells. Cell Biol Toxicol. 2009;25(4):309-20.
  • 25. Scorei R, Ciubar R, Ciofrangeanu CM, Mitran V, Cimpean A, Iordachescu D. Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biol Trace Elem Res. 2008 ;122(3):197-205.
  • 26. Kahraman E, Göker E. Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway. J Trace Elem Med Biol. 2022;73:127043.
  • 27. Cabus U, Secme M, Kabukcu C, Cil N, Dodurga Y, Mete G, Fenkci IV. Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms. Gene. 2021;796-797:145799.
  • 28. Heidari F, Rabizadeh S, Mansournia MA, Mirmiranpoor H, Salehi SS, Akhavan S, Esteghamati A, Nakhjavani M. Inflammatory, oxidative stress and anti-oxidative markers in patients with endometrial carcinoma and diabetes. Cytokine. 2019;120:186-190.
  • 29. Liu Q, Yu M, Zhang T. Construction of Oxidative Stress-Related Genes Risk Model Predicts the Prognosis of Uterine Corpus Endometrial Cancer Patients. Cancers (Basel). 2022;14(22):5572.
  • 30. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167-197.
  • 31. Hacioglu C, Kar F, Kacar S, Sahinturk V, Kanbak G. High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line. Biol Trace Elem Res. 2020;193(2):400-409.
  • 32. Markouli M, Strepkos D, Papavassiliou AG, Piperi C. Targeting of endoplasmic reticulum (ER) stress in gliomas. Pharmacol Res. 2020;157:104823.
  • 33. Li Y, Ma H, Lu Y, Tan BJ, Xu L, Lawal TO, Mahady GB, Liu D. Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. Biomed Res Int. 2016;2016:2574637.
  • 34. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.
  • 35. Peñaranda Fajardo NM, Meijer C, Kruyt FA. The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. Biochem Pharmacol. 2016;118:1-8.
  • 36. Song S, Tan J, Miao Y, Li M, Zhang Q. Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol. 2017;232(11):2977-2984.
  • 37. Vellanki RN, Zhang L, Volchuk A. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration. PLoS One. 2013;8(1):e54060.
  • 38. Peñaranda-Fajardo NM, Meijer C, Liang Y, Dijkstra BM, Aguirre-Gamboa R, den Dunnen WFA, Kruyt FAE. ER stress and UPR activation in glioblastoma: identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation. Cell Death Dis. 2019;10(10):690.
  • 39. Zhang Y, Pusch S, Innes J, Sidlauskas K, Ellis M, Lau J, El-Hassan T, Aley N, Launchbury F, Richard-Loendt A, deBoer J, Chen S, Wang L, von Deimling A, Li N, Brandner S. Mutant IDH Sensitizes Gliomas to Endoplasmic Reticulum Stress and Triggers Apoptosis via miR-183-Mediated Inhibition of Semaphorin 3E. Cancer Res. 2019;79(19):4994-5007.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Pharmaceutical Biochemistry
Journal Section ORİJİNAL MAKALE
Authors

Ceyhan Hacıoğlu 0000-0002-0993-6118

Publication Date March 18, 2024
Submission Date December 13, 2023
Acceptance Date February 2, 2024
Published in Issue Year 2024 Volume: 46 Issue: 2

Cite

Vancouver Hacıoğlu C. Borik Asidin Endoplazmik Retikulum Stresiyle İlgili Proteinler Aracılığıyla Glioblastoma Hücreleri Üzerindeki Antiproliferatif Etkileri. Osmangazi Tıp Dergisi. 2024;46(2):217-2.


13299        13308       13306       13305    13307  1330126978