Research Article
BibTex RIS Cite

RUSLE Modeli ile Tepelik Bir Arazinin Toprak Erozyonunun Değerlendirilmesi - Chittagong Hill Tracts Örneği

Year 2023, Volume: 4 Issue: 2, 151 - 165, 28.09.2023
https://doi.org/10.48123/rsgis.1197801

Abstract

Pek çok çevre sorunu arasında toprak erozyonu, Bangladeş'teki Bandarban, Rangamati ve Khagrachari olmak üzere üç ilçeden oluşan ve Chittagong Hill Tracts (CHTs) olarak bilinen bölge için ciddi bir tehdit oluşturmaktadır. Bu engebeli arazi için yıllık toprak erozyon oranı, Uzaktan Algılama ve Coğrafi Bilgi Sistemi (GIS) ile entegre edilmiş olan Yenilenmiş Evrensel Toprak Kayıpları Eşitliği (YETKE) modeli kullanılarak hesaplanmıştır. Yağışın tahmini erozivitesi, toprağın erodibilitesi, eğim uzunluğu ve eğim dikliği, mahsul yönetim faktörü ve koruma uygulamaları aralıkları, sırasıyla, 806,2 ila 1513,2 MJ.mm. ha-1.h-1.yr-1 (veya ortalama 1121,5 MJ.mm. ha-1.h-1.yr-1), 0 ila 0.02 t.h.MJ-1 mm-1, 0 ila 78.8 (veya ortalama 0.41), 0 ila 0.63 (veya ortalama 0.57) ve 0.55 ila 1 (veya ortalama 0.73) olarak ölçülmüştür. Elde edilen bulgulara göre, çalışma alanında yılda 182621,5 ton toprak kaybı beklenmektedir ve tahmini yıllık toprak erozyon oranı da 15,18 t.ha-1.yr-1 olarak öngörülmüştür. Ağırlıklı bindirmeli indeks yaklaşımı kullanılarak oluşturulan olasılık bölgesi haritası araştırma bölgesinin çoğunluğunun hafif olasılık bölgesi içinde kaldığını ve yalnızca küçük bir yüzdesinin yüksek ve çok yüksek olasılık bölgeleri içinde kaldığını göstermektedir. Bu çalışma, Uzaktan Algılama (RS) ve CBS teknolojilerinin erozyonu tahmin etmede yararlı olduğunu ve toprak koruma programlarında kullanılabileceğini kanıtlamaktadır.

References

  • Bai, Z. G. (2006). Assessing land degradation in the Chittagong Hill Tracts , Bangladesh , using NASA GIMMS (ISRIC Report 2006/06). Wageningen, The Netherlands: ISRIC - World Soil Information.
  • Boyce R. C., (1975). Sediment routing with sediment delivery ratios. Present and prospective technology for predicting sediment yields and sources (USDA ARS-S-40). Washington DC: U.S. Department of Agriculture.
  • Byizigiro, R. V., Rwanyiziri, G., Mugabowindekwe, M, Kagoyire, C., & Biryabarema, M. (2020). Estimation of Soil Erosion Using RUSLE Model and GIS: The Case of Satinskyi Catchment, Western Rwanda. Rwanda Journal of Engineering, Science, Technology and Environment, 3(1), 14-33.
  • Das, B., Paul, A., Bordoloi, R., Tripathi, O. P., & Pandey, P. K. (2018). Soil erosion risk assessment of hilly terrain through integrated approach of RUSLE and geospatial technology: a case study of Tirap District, Arunachal Pradesh. Modeling Earth Systems and Environment, 4(1), 373-381.
  • Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35(2), 441-453.
  • Earthdata. (2022a, August 20). Giovanni - Interactive Online Visualization and Analysis Infrastructure. NASA Goddard Earth Sciences Data and Information Services Center. Retrieved from https://giovanni.gsfc.nasa.gov/giovanni/
  • Earthdata. (2022b, August 20). Earthdata Search. Retrieved from https://search.earthdata.nasa.gov/search
  • FAO. (2022, August 20). Data Catalog. Food and Agriculture Organization of the United Nations. Retrieved from https://data.apps.fao.org/map/catalog/
  • FAO-UNESCO. (1987). Soil map of the world. Retrieved from https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world.
  • Farhan, Y., Zregat, D., & Farhan, I. (2013). Spatial Estimation Of Soil Erosion Risk Using RUSLE approach, RS, and GIS techniques: A case study of Kufranja Watershed, Northern Jordan. Journal of Water Resource and Protection, 5(12), 1247-1261.
  • Farid, A. T. M., Iqbal, A., & Karim, Z. (1992). Soil erosion in the Chittagong Hill Tract and its impact on nutrient status of soils in Bangladesh. Bangladesh Journal of Soil Science, 23, 92-101.
  • Ganasri, B. P., & Ramesh, H. (2016). Geoscience frontiers assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953-961.
  • Gelagay, H. S. (2016). RUSLE and SDR model based sediment yield assessment in a GIS and remote sensing environment; A case study of Koga Watershed, Upper Blue Nile Basin, Ethiopia. Journal of Waste Water Treatment & Analysis, 7(2), 239. doi: 10.4172/2157-7587.1000239.
  • Hasan, M., & Alam, A. A. (1970). Land degradation situation in Bangladesh and role of agroforestry. Journal of Agriculture & Rural Development, 4(1), 19-25.
  • Islam, M., Bhuiyan, M., & Hossain, M. (2015). Vetiver Grass as a Potential Resource for Rural Development in Bangladesh. Agricultural Engineering International: CIGR Journal, 10, 1-18.
  • Jahun, B. G., Ibrahim, R., Dlamini, N. S., & Musa, S. M. (2015). Review of soil erosion assessment using RUSLE model and GIS. Journal of Biology, Agriculture and Healthcare, 5(9), 36-47.
  • Jha, M. K., & Paudel, R. C. (2010). Erosion predictions by empirical models in a mountainous Watershed in Nepal. Journal of Spatial Hydrology, 10(1), 89-102.
  • Khosrokhani, M., & Pradhan, B. (2014). Spatio-temporal assessment of soil erosion at Kuala Lumpur metropolitan city using remote sensing data and GIS. Geomatics, Natural Hazards and Risk, 5(3), 252-270.
  • Kim, J. B., Saunders, P. & Finn, J. T. (2005). Rapid assessment of soil erosion in the Rio Lempa Basin, Central America, using the universal soil loss equation and geographic information systems. Environmental Management, 36(6), 872-885.
  • Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondônia , Brazilian Amazonia : Using RUSLE , remote sensing and GIS. Land Degradation & Development, 15(5), 499-512.
  • Malek, A. (2016). Alluvial land reclamation process of Bangladesh with special reference to historical geography, Geo-politics and Environment since the Colonial Rule (Doctoral dissertation). Kansai University, Osaka, Japan.
  • Moore I. D., & Burch G. J. (1986). Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50(5), 1294-1289.
  • Mukanov, Y., Chen, Y., Baisholanov, S., Amanambu, A. C., Issanova, G., Abenova, A., Fang, G., & Abayev, N. (2019). Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan. Acta Geophysica, 67(3), 921-938.
  • Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H. A., Naderi, M., & Dematte, J. A. M. (2017). Soil loss prediction by an integrated system using RUSLE, GIS and remote sensing in semi-arid region. Geoderma Regional, 11, 28-36. doi: 10.1016/j.geodrs.2017.06.003.
  • Prasannakumar, V., Shiny, R., Geetha, N., & Vijith, H. (2011). Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: A case study of Siruvani river watershed in Attapady valley, Kerala, India. Environmental Earth Sciences, 64(4), 965-972.
  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting Soil Erosion by Water: A guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) (Agricultural Handbook Number 703). Washington DC: US Department of Agriculture.
  • Saha, M., & Sauda, S. S. (2019, October). Estimation of annual soil erosion rate using RUSLE : A study on the Jamuna River sub-basin in Bangladesh. In European Space Agency's Living Planet Symposium, 2019. Proocedings. (pp. 1-4). ESA.
  • Saha, M., Sauda, S. S., Real, H. R. K., & Mahmud, M. (2022). Estimation of annual rate and spatial distribution of soil erosion in the Jamuna basin using RUSLE model: A geospatial approach. Environmental Challenges, 8, 100524. doi: 10.1016/j.envc.2022.100524.
  • Sheikh, A. H., Palria, S., & Alam, A. (2011). Predicting Soil Loss by Water Universal S oil Loss Equation (USLE). Recent Research in Scince and Technology, 3(3), 51-57.
  • Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena, 55(1), 33-48.
  • Singh, G., Chandra, S., & Babu, R. (1981). Soil loss and prediction research in India (Bulletin No. T-12/D9). Dehradun, India: Central Soil and Water Conservation Research and Training Institute.
  • Shin, G. J. (1999). The analysis of soil erosion analysis in watershed using GIS (Doctoral dissertation). Gang-won National University, Department of Civil Engineering, Gang-won, South Korea.
  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893-906.
  • Tufekcioglu, M., Yavuz, M., Vatandaslar, C., Dinc, M., Duman, A., & Tufekcioglu, A. (2018). Çoruh Nehri Havzası’nda Bulunan Veliköy Alt Havzası’nın Yüzey Erozyon Riskinin Belirlenmesi ve Haritalandırılması. Doğal Afetler ve Çevre Dergisi, 4(2), 210-220.
  • USGS. (2022, August 20). Earth Explorer. U.S. Geological Survey. Retrieved from https://earthexplorer.usgs.gov/
  • Wischmeier W. H., & Smith D. D., (1978). Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (USDA Agriculture Handbook No 537). Washington DC: U.S. Department of Agriculture.
  • Zhang, H., Yang, Q., Li, R., Liu, Q., Moore, D., He, P., Ritsema, C. J., & Geissen, V. (2013). Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers and Geosciences, 52, 177-188.

Soil Erosion Assessment of a Hilly Terrain by RUSLE Model - A Case Study of Chittagong Hill Tracts

Year 2023, Volume: 4 Issue: 2, 151 - 165, 28.09.2023
https://doi.org/10.48123/rsgis.1197801

Abstract

Among many environmental problems, soil erosion poses a serious threat to the region known as Chittagong Hill Tracts (CHTs) in Bangladesh, comprising three districts, namely Bandarban, Rangamati, and Khagrachari. The annual soil erosion rate for this hilly terrain was calculated using the Revised Universal Soil Loss Equation (RUSLE) model integrated with Remote Sensing and Geographic Information System (GIS). The ranges of the estimated erosivity of rainfall, erodibility of the soil, slope length and slope steepness, crop management factor and conservation practices are 806.2 to 1513.2 MJ.mm.ha-1.h-1.yr-1 (or an average of 1121.5 MJ.mm.ha-1.h-1.yr-1), 0 to 0.02 t.h.MJ-1 mm-1, 0 to 78.8 (or average 0.41), 0 to 0.63 (or average 0.57) and 0.55 to 1 (or average 0.73), respectively. As per the findings, the study area is expected to lose 182621.5 tons of soil annually, with the estimated annual soil erosion rate of 15.18 t.ha-1.yr-1 also predicted. The weighted overlay index approach was used to produce the probability zone map, which shows that the majority of the research region falls within the slight probability zone and that only a small percentage falls inside the high and very high probability zones. This study proves RS-GIS is useful for predicting erosion and can be used in soil conservation programs.

References

  • Bai, Z. G. (2006). Assessing land degradation in the Chittagong Hill Tracts , Bangladesh , using NASA GIMMS (ISRIC Report 2006/06). Wageningen, The Netherlands: ISRIC - World Soil Information.
  • Boyce R. C., (1975). Sediment routing with sediment delivery ratios. Present and prospective technology for predicting sediment yields and sources (USDA ARS-S-40). Washington DC: U.S. Department of Agriculture.
  • Byizigiro, R. V., Rwanyiziri, G., Mugabowindekwe, M, Kagoyire, C., & Biryabarema, M. (2020). Estimation of Soil Erosion Using RUSLE Model and GIS: The Case of Satinskyi Catchment, Western Rwanda. Rwanda Journal of Engineering, Science, Technology and Environment, 3(1), 14-33.
  • Das, B., Paul, A., Bordoloi, R., Tripathi, O. P., & Pandey, P. K. (2018). Soil erosion risk assessment of hilly terrain through integrated approach of RUSLE and geospatial technology: a case study of Tirap District, Arunachal Pradesh. Modeling Earth Systems and Environment, 4(1), 373-381.
  • Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35(2), 441-453.
  • Earthdata. (2022a, August 20). Giovanni - Interactive Online Visualization and Analysis Infrastructure. NASA Goddard Earth Sciences Data and Information Services Center. Retrieved from https://giovanni.gsfc.nasa.gov/giovanni/
  • Earthdata. (2022b, August 20). Earthdata Search. Retrieved from https://search.earthdata.nasa.gov/search
  • FAO. (2022, August 20). Data Catalog. Food and Agriculture Organization of the United Nations. Retrieved from https://data.apps.fao.org/map/catalog/
  • FAO-UNESCO. (1987). Soil map of the world. Retrieved from https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world.
  • Farhan, Y., Zregat, D., & Farhan, I. (2013). Spatial Estimation Of Soil Erosion Risk Using RUSLE approach, RS, and GIS techniques: A case study of Kufranja Watershed, Northern Jordan. Journal of Water Resource and Protection, 5(12), 1247-1261.
  • Farid, A. T. M., Iqbal, A., & Karim, Z. (1992). Soil erosion in the Chittagong Hill Tract and its impact on nutrient status of soils in Bangladesh. Bangladesh Journal of Soil Science, 23, 92-101.
  • Ganasri, B. P., & Ramesh, H. (2016). Geoscience frontiers assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953-961.
  • Gelagay, H. S. (2016). RUSLE and SDR model based sediment yield assessment in a GIS and remote sensing environment; A case study of Koga Watershed, Upper Blue Nile Basin, Ethiopia. Journal of Waste Water Treatment & Analysis, 7(2), 239. doi: 10.4172/2157-7587.1000239.
  • Hasan, M., & Alam, A. A. (1970). Land degradation situation in Bangladesh and role of agroforestry. Journal of Agriculture & Rural Development, 4(1), 19-25.
  • Islam, M., Bhuiyan, M., & Hossain, M. (2015). Vetiver Grass as a Potential Resource for Rural Development in Bangladesh. Agricultural Engineering International: CIGR Journal, 10, 1-18.
  • Jahun, B. G., Ibrahim, R., Dlamini, N. S., & Musa, S. M. (2015). Review of soil erosion assessment using RUSLE model and GIS. Journal of Biology, Agriculture and Healthcare, 5(9), 36-47.
  • Jha, M. K., & Paudel, R. C. (2010). Erosion predictions by empirical models in a mountainous Watershed in Nepal. Journal of Spatial Hydrology, 10(1), 89-102.
  • Khosrokhani, M., & Pradhan, B. (2014). Spatio-temporal assessment of soil erosion at Kuala Lumpur metropolitan city using remote sensing data and GIS. Geomatics, Natural Hazards and Risk, 5(3), 252-270.
  • Kim, J. B., Saunders, P. & Finn, J. T. (2005). Rapid assessment of soil erosion in the Rio Lempa Basin, Central America, using the universal soil loss equation and geographic information systems. Environmental Management, 36(6), 872-885.
  • Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondônia , Brazilian Amazonia : Using RUSLE , remote sensing and GIS. Land Degradation & Development, 15(5), 499-512.
  • Malek, A. (2016). Alluvial land reclamation process of Bangladesh with special reference to historical geography, Geo-politics and Environment since the Colonial Rule (Doctoral dissertation). Kansai University, Osaka, Japan.
  • Moore I. D., & Burch G. J. (1986). Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50(5), 1294-1289.
  • Mukanov, Y., Chen, Y., Baisholanov, S., Amanambu, A. C., Issanova, G., Abenova, A., Fang, G., & Abayev, N. (2019). Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan. Acta Geophysica, 67(3), 921-938.
  • Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H. A., Naderi, M., & Dematte, J. A. M. (2017). Soil loss prediction by an integrated system using RUSLE, GIS and remote sensing in semi-arid region. Geoderma Regional, 11, 28-36. doi: 10.1016/j.geodrs.2017.06.003.
  • Prasannakumar, V., Shiny, R., Geetha, N., & Vijith, H. (2011). Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: A case study of Siruvani river watershed in Attapady valley, Kerala, India. Environmental Earth Sciences, 64(4), 965-972.
  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting Soil Erosion by Water: A guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) (Agricultural Handbook Number 703). Washington DC: US Department of Agriculture.
  • Saha, M., & Sauda, S. S. (2019, October). Estimation of annual soil erosion rate using RUSLE : A study on the Jamuna River sub-basin in Bangladesh. In European Space Agency's Living Planet Symposium, 2019. Proocedings. (pp. 1-4). ESA.
  • Saha, M., Sauda, S. S., Real, H. R. K., & Mahmud, M. (2022). Estimation of annual rate and spatial distribution of soil erosion in the Jamuna basin using RUSLE model: A geospatial approach. Environmental Challenges, 8, 100524. doi: 10.1016/j.envc.2022.100524.
  • Sheikh, A. H., Palria, S., & Alam, A. (2011). Predicting Soil Loss by Water Universal S oil Loss Equation (USLE). Recent Research in Scince and Technology, 3(3), 51-57.
  • Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena, 55(1), 33-48.
  • Singh, G., Chandra, S., & Babu, R. (1981). Soil loss and prediction research in India (Bulletin No. T-12/D9). Dehradun, India: Central Soil and Water Conservation Research and Training Institute.
  • Shin, G. J. (1999). The analysis of soil erosion analysis in watershed using GIS (Doctoral dissertation). Gang-won National University, Department of Civil Engineering, Gang-won, South Korea.
  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893-906.
  • Tufekcioglu, M., Yavuz, M., Vatandaslar, C., Dinc, M., Duman, A., & Tufekcioglu, A. (2018). Çoruh Nehri Havzası’nda Bulunan Veliköy Alt Havzası’nın Yüzey Erozyon Riskinin Belirlenmesi ve Haritalandırılması. Doğal Afetler ve Çevre Dergisi, 4(2), 210-220.
  • USGS. (2022, August 20). Earth Explorer. U.S. Geological Survey. Retrieved from https://earthexplorer.usgs.gov/
  • Wischmeier W. H., & Smith D. D., (1978). Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (USDA Agriculture Handbook No 537). Washington DC: U.S. Department of Agriculture.
  • Zhang, H., Yang, Q., Li, R., Liu, Q., Moore, D., He, P., Ritsema, C. J., & Geissen, V. (2013). Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers and Geosciences, 52, 177-188.
There are 37 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Easmat Ara Afrin 0000-0002-5479-5182

M. M. Abdullah Al Mamun 0000-0002-7210-930X

Mohammed Mozaffar Hossain 0000-0002-4983-2604

Li Zhang 0000-0002-5880-7507

Early Pub Date September 26, 2023
Publication Date September 28, 2023
Submission Date November 25, 2022
Acceptance Date April 3, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Afrin, E. A., Mamun, M. M. A. A., Hossain, M. M., Zhang, L. (2023). Soil Erosion Assessment of a Hilly Terrain by RUSLE Model - A Case Study of Chittagong Hill Tracts. Türk Uzaktan Algılama Ve CBS Dergisi, 4(2), 151-165. https://doi.org/10.48123/rsgis.1197801