Research Article
BibTex RIS Cite

Enhancing The Electrical Conductivity by Graphene Growing On Nickel Electroplated Bolts By Chemical Vapor Deposition (CVD) Technique

Year 2025, Volume: 1 Issue: 1, 49 - 60, 20.06.2025

Abstract

The increasing popularity of electric vehicles in recent years brings different demands in the automotive industry. Even the simplest components in EV such as bolts and nuts require new technologies to meet customer demands. Conductive coatings are one of the examples of such demands in order to get rid of the load accumulation that may occur inside the vehicle by grounding.
Thanks to the high electrical conductivity of copper, electrolytic copper plating process for fasteners is widely used for such applications. However, electrolytic copper coating brings disadvantages such as low corrosion resistance that brings fast darkening as a result of oxidation and galvanic corrosion that may occur due to the fact that the opposite part is a different metal.
In this study, graphene was grown on electrolytic pure nickel-plated bolts by chemical vapor deposition (CVD) method. RAMAN analyses were performed to confirm graphene formation on nickel-plated samples. Graphene coated samples were tested in Norm coating in electrically conductive SCANIA STD 4472 setup. To evaluate the corrosion resistance, ISO 9227 salt spray test was performed.

Ethical Statement

"The authors confirm that no ethical approval was required from institutional committees for the completion of this research. Additionally, the authors also confirm that there are no conflicts of interest related to this study, and all authors have approved the final version of the manuscript submitted for publication.

Supporting Institution

This research was supported by Norm Coating Engineering Department, which provided technical resources, laboratory facilities, and invaluable professional support throughout the duration of the study. The authors gratefully acknowledge Norm Coating for their significant contributions and collaboration that made this work possible.

Thanks

The authors would like to thank Prof. Dr. Fethullah Güneş, Çağlar Erdem, and Berkay Sallak for their valuable support and contributions to this work. The authors also express their gratitude to Norm Coating for the technical and moral support provided during the course of this study.

References

  • Anderson, K. J. (1993). Plating Metals. MRS Bulletin, 18(1), 57–57. doi: 10.1557/S088376940004349
  • Arya, A. K., Raman, R. K. S., Parmar, R., Amati, M., Gregoratti, L., & Saxena, S. (2022). Spectroscopic investigation of improved corrosion resistance of nickel due to multilayer graphene coating developed with suitably tilted substrate during CVD. Carbon, 200, 215–226. doi:10.1016/J.CARBON.2022.08.054
  • Aziz Ameen, H., Salman Hassan, K., & Rasheed Mohameed, B. (2010). The effect of electroplating of Cr and Sn on corrosion resistance of low carbon steel (CK15). doi:10.5251/ajsir.2010.1.3.565.572
  • Barkan, T. (2023). The Role of Graphene in Achieving e-Mobility in Automotive Applications. doi:10.4271/EPR2023006
  • Chang, W., Wang, P., Zhao, Y., Ren, C., Popov, B. N., & Li, C. (2020). Characterizing corrosion properties of graphene barrier layers deposited on polycrystalline metals. Surface and Coatings Technology, 398, 126077. doi: 10.1016/J.SURFCOAT.2020.126077
  • Chemartin, L., Lalande, P., & Tristant, F. (2013). Modeling and simulation of sparking in fastening assemblies. https://onera.hal.science/hal-01058554
  • Childres, I., Jauregui, L. A., Park, W., Cao, H., & Chen, Y. P. (n.d.). Raman Spectroscopy of Graphene and Related Materials. In: Jang, J.I., Ed., New Developments in Photon and Materials Research, NOVA Science Publishers, Inc., New York, 403-418.
  • Das, P. P., & Chaudhary, V. (2021). Application of Graphene-Based Biopolymer Nanocomposites for Automotive and Electronic Based Components. 311–323. doi: 10.1007/978-981-15-9180-8_17
  • Database, N. (2025). 23MnB4 / 1.5535 - steelnumber - chemical composition, equivalent, properties. Steelnumber.com. https://www.steelnumber.com/en/steel_composition_eu.php?name_i
  • Dericiler, K., Aliyeva, N., Mohammadjafari Sadeghi, H., Sas, H. S., Menceloglu, Y. Z., & Saner Okan, B. (2022). Graphene in automotive parts. Nanotechnology in the Automotive Industry, 623–651. doi:10.1016/B978-0-323-90524-4.00030-X
  • Duan, J., Tang, X., Dai, H., Yang, Y., Wu, W., Wei, X., & Huang, Y. (2019). Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochemical Energy Reviews 2019 3:1, 3(1), 1–42. doi:10.1007/S41918-019-00060-4
  • Elmarakbi, A., & Azoti, W. (2018). State of the Art on Graphene Lightweighting Nanocomposites for Automotive Applications. Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composites, 1–23. doi:10.1016/B978-0-323-48061-1.00001-4
  • Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology 2013 8:4, 8(4), 235–246. doi: 10.1038/nnano.2013.46
  • G, M. D., & C, H. M. (1997, April). Effect of conductivity between fasteners and aluminum skin on eddy current specimens. Osti.gov. https://www.osti.gov/biblio/460783
  • Hingley, S. L. (2013). Characterisation of Potential Replacements for Nickel Compounds used in Decorative Chromium Plating. https://wlv.openrepository.com/handle/2436/311675
  • Hingley, S., & Oduoza, C. (2011). An Investigation into a Copper/Tin Alloy as an Underlying Coating to Chromium. Formerly Part of Journal of Materials Science and Engineering, 1, 410–420.
  • Hunt, G. J., Javaid, R., Simon, J., Peplow, M., & Prengaman, C. (2022). Understanding Conductive Layer Deposits: Test Method Development for Lubricant Performance Testing for Hybrid and Electric Vehicle Applications. SAE International Journal of Electrified Vehicles, 12(2), 263–277. doi: 10.4271/14-12-02- 0014
  • Kadirgama, G., Bin Razman, M. I., Ramasamy, D., Kadirgama, K., & Farhana, K. (2023). Graphene as an Alternative Additive in Automotive Cooling System. Lecture Notes in Mechanical Engineering, 13–35. doi:10.1007/978-981-19-1457-7_2
  • Köhne, M. (2021, February 3). Can graphene compete with copper in electrical conductivity? Bosch Global. https://www.bosch.com/stories/can-graphene-compete-with-copper-in-electrical-conductivity/
  • Kuang, D., Xu, L., Liu, L., Hu, W., & Wu, Y. (2013a). Graphene–nickel composites. Applied Surface Science, 273, 484–490. doi:10.1016/J.APSUSC.2013.02.066
  • Kuang, D., Xu, L., Liu, L., Hu, W., & Wu, Y. (2013b). Graphene–nickel composites. Applied Surface Science, 273, 484–490. doi:10.1016/J.APSUSC.2013.02.066
  • Kurth, J. C., Krauss, P. D., McGormley, J. C., & Harper, J. (2015, March 15–19). Accelerated corrosion study of direct-fixation fasteners [Paper presentation]. CORROSION 2015 Conference, Dallas, TX, United States. AMPP. doi:10.5006/C2015-06133
  • Liu, Q., Lu, C., & Li, Y. (2017). Controllable synthesis of ultrathin nickel oxide sheets on carbon cloth for high-performance supercapacitors. RSC Advances, 7(37), 23143–23148. doi: 10.1039/C6RA27550H
  • Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87. doi:10.1016/J.PHYSREP.2009.02.003
  • Ni, Z., Wang, Y., Yu, T., & Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Research, 1(4), 273–291. doi:10.1007/S12274-008-8036-1
  • Park, O. K., Cho, Y., Lee, S., Yoo, H. C., Song, H. K., & Cho, J. (2011). Who will drive electric vehicles, olivine or spinel? Energy & Environmental Science, 4(5), 1621–1633. doi: 10.1039/C0EE00559B
  • Peng, Q., Xiong, W., Tan, X., Venkataraman, M., Mahendran, A. R., Lammer, H., Kejzlar, P., & Militky, J. (2022). Effects of ultrasonic-assisted nickel pretreatment method on electroless copper plating over graphene. Scientific Reports, 12(1). doi:10.1038/S41598-022-25457-Y
  • Ren, Z., Meng, N., Shehzad, K., Xu, Y., Qu, S., Yu, B., & Luo, J. K. (2015). Mechanical properties of nickelgraphene composites synthesized by electrochemical deposition. Nanotechnology, 26(6), 065706. Doi: 10.1088/0957-4484/26/6/065706
  • Rizzi, L., Wijaya, A. F., Palanisamy, L. V., Schuster, J., Köhne, M., & Schulz, S. E. (2020). Quantifying the influence of graphene film nanostructure on the macroscopic electrical conductivity. Nano Express, 1(2), 020035. Doi:10.1088/2632-959X/ABB37A
  • Sampaio, R. F. V., Pragana, J. P. M., Clara, R. G., Bragança, I. M. F., Silva, C. M. A., & Martins, P. A. F. (2022). New Self-Clinching Fasteners for Electric Conductive Connections. Journal of Manufacturing and Materials Processing 2022, Vol. 6, Page 159, 6(6), 159. doi:10.3390/JMMP6060159
  • Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., & Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195, 145– 154. doi: 10.1016/J.ELSPEC.2014.07.003
  • Surekha, G., Krishnaiah, K. V., Ravi, N., & Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1), 012012. doi:10.1088/1742-6596/1495/1/012012
  • Szeptycka, B., Gajewska-Midzialek, A., & Babul, T. (2016). Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings. Journal of Materials Engineering and Performance, 25(8), 3134– 3138. doi:10.1007/S11665-016-2009-4
  • Vallien, A. (2018a). Material characterization of multi layered zn-alloy coatings on fasteners. https://kth.divaportal.org/smash/get/diva2:1283276/FULLTEXT03.pdf
  • Van Hau, T., Van Trinh, P., Hoai Nam, N. P., Van Tu, N., Lam, V. D., Phuong, D. D., Minh, P. N., & Thang, B. H. (2020). Electrodeposited nickel–graphene nanocomposite coating: effect of graphene nanoplatelet size on its microstructure and hardness. RSC Advances, 10(37), 22080–22090. doi:10.1039/D0RA03776A
  • Van Hau, T., Van Trinh, P., Van Tu, N., Duoc, P. N. D., Phuong, M. T., Toan, N. X., Phuong, D. D., Nam, N. P. H., Lam, V. D., Minh, P. N., & Thang, B. H. (2021). Electrodeposited nickel–graphene nanocomposite coating: influence of graphene nanoplatelet size on wear and corrosion resistance. Applied Nanoscience (Switzerland), 11(5), 1481–1490. doi:10.1007/S13204-021-01780-0
  • Weisenberger, L. M., & Durkin, B. J. (1994). Copper Plating. Surface Engineering, 167–176. doi: 10.31399/ASM.HB.V05.A0001242
  • Yasin, G., Arif, M., Nizam, M. N., Shakeel, M., Khan, M. A., Khan, W. Q., Hassan, T. M., Abbas, Z., Farahbakhsh, I., & Zuo, Y. (2018). Effect of surfactant concentration in electrolyte on the fabrication and properties of nickel-graphene nanocomposite coating synthesized by electrochemical co-deposition. RSC Advances, 8(36), 20039–20047. doi:10.1039/C7RA13651J
  • Yin, J. J., Li, S. L., Yao, X. L., Chang, F., Li, L. K., & Zhang, X. H. (2016). Lightning Strike Ablation Damage Characteristic Analysis for Carbon Fiber/Epoxy Composite Laminate with Fastener. Applied Composite Materials, 23(4), 821–837. doi:10.1007/S10443-016-9487-2
  • Yivlialin, R., Bussetti, G., Duò, L., Yu, F., Galbiati, M., & Camilli, L. (2018). CVD Graphene/Ni Interface Evolution in Sulfuric Electrolyte. Langmuir, 34(11), 3413–3419. doi: 10.1021/ACS.LANGMUIR.8B00459
There are 40 citations in total.

Details

Primary Language English
Subjects Reaction Kinetics and Dynamics
Journal Section Research Article
Authors

Etkin Can

Metehan Atagür 0000-0002-1916-457X

Publication Date June 20, 2025
Submission Date April 22, 2025
Acceptance Date May 23, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

APA Can, E., & Atagür, M. (2025). Enhancing The Electrical Conductivity by Graphene Growing On Nickel Electroplated Bolts By Chemical Vapor Deposition (CVD) Technique. Smyrna Journal of Natural and Data Sciences, 1(1), 49-60.