Research Article
BibTex RIS Cite
Year 2020, Volume: 30 Issue: 2, 99 - 107, 28.06.2020
https://doi.org/10.32710/tekstilvekonfeksiyon.548460

Abstract

References

  • 1. Deitzel J.M., Kleinmeyer J., Harris DEA., & Tan NB. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42:261–272.
  • 2. Supaphol P., Suwantong O., Sangsanoh P., Srinivasan S., Jayakumar R. & Nair SV. (2012). Electrospinning of biocompatible polymers and their potentials in biomedical applications. Adv Polym Sci, 246:213–240.
  • 3. Ramakrishna S., Fujıhara K., Teo WE., Lim TC. & Ma Z. (2005). An introduction to electrospinning and nanofibers. Singapore: World Scientific Publishing Co, 396 p.
  • 4. Patanaik A., Anandjiwala RD., Rengasamy RS., Ghosh A. & Pal H. (2007). Nanotechnology in fibrous materials- a new perspective. Text Prog, 39:67-120.
  • 5. Huang C., Chen S., Lai C., Reneker DH., Qiu H., Ye Y. & Hou H. (2006). Electrospun polymer nanofibres with small diameters. Nanotechnology, 17:1558–1563.
  • 6. Kotek R. (2008). Recent advances in polymer fibers. Polym. Rev. 48, 221–229.
  • 7. Zhang X., Reagan R.M. & Kaplan D.L. (2009). Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliver Rev, 61:988–1006. 8. Amiraliyan N., Nouri M. & Kish M.H. (2009). Effects of some electrospinning parameters on morphology of natural silk-based nanofibers. J Appl Polym Sci, 113:226–234.
  • 9. Tucker N., Stanger J.J., Staiger M.P., Razzaq H. & Hofman K. (2012). The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fabr Fiber, 7:63–72.
  • 10. Valizadeh A. & Farkhani S.M. (2014). Electrospinning and electrospun nanofibres. IET Nanobiotechnoloy, 8:83–92.
  • 11. Cengiz F., Krucinska I., Gliscinska E., Chrzanowski M. & Göktepe F. (2009). Comparative analysis of various electrospinning methods of nanofibre formation. Fibres Text East Eur, 17:13–19.
  • 12. Şafak Ş., Düzyer Ş. & Karaca E. (2016). Evaluation of biocompatibility of fibroin-based electrospun nanofibrous mats for medical applications. Ind Textila, 67:3–9.
  • 13. Jian F., HaiTao N., Tong L. & XunGai W. (2008). Applications of electrospun nanofibers. Chinese Sci Bull, 15:2265–2286.
  • 14. Vanugopal J.R., Zhang Y. & Ramakrishna S. (2006). In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs, 30:440–446.
  • 15. Yoo H.S., Kim T.G. & Park T.G. (2009). Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliver Rev, 61:1033–1042.
  • 16. Kenawy E.R., Abdel-Hay F.I., El-Newehy M.H. & Wnek G.E. (2009). Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys, 113:296–302.
  • 17. Shelke N.B., James R., Laurencin C.T. & Kumbar S.G. (2014). Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Avdan Technol, 25:448–460.
  • 18. Ji Y., Ghosh K., Li B., Sokolov J.C., Clark R.A. & Rafailovich M.H. (2006). Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol Biosci, 6:811–817.
  • 19. Schante C.E., Zuber G., Herlin C. & Vandamme T.F. (2011). Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohyd Polym, 85:469–489.
  • 20. Aytar P., Buruk Y. & Çabuk A. (2013). Streptecoccus equi ile hyaluronik asit üretiminde optimum koşullarin plackett-burman yöntemi ile belirlenmesi. Elektronik Mikrobiyoloji Dergisi, 11:28–35.
  • 21. Collins M.N. & Birkinshaw C. (2013). Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohyd Polym, 92:1262–1279.
  • 22. Qiu X. & Hu S. (2013). Smart materials based on cellulose: a review of the preparations, properties and applications. Materials, 6:738–781.
  • 23. Klemm D., Heublein B., Fink H.P. & Bohn A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit, 44:3358–3393.
  • 24. Qin Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polym Int, 57:171–180.
  • 25. Üstündağ C.G., Karaca E., Özbek S. & Çavuşoğlu İ. (2010). In vivo evaluation of electrospun poly (vinyl alcohol)/sodium alginate nanofibrous mat as wound dressing. Tekst Konfeksiyon , 20:290–298.
  • 26. Şahiner İ.T. (2011). Simvastatin yüklü polipropilen yama ile onarilan karın duvarı defektlerinde batın içi yapışıklıkların karşılaştırılması. Ph.D. Dissertation: Kırıkkale University.
  • 27. Yeğenoğlu A. (2005). Postoperatif intraperitoneal adezyonların önlenmesinde değişik dozlardaki heparin ve seprafilm’in etkinliklerinin karşılaştırılması. Ph.D. Dissertation: Dr. Lütfi Kırdar Education and Research Hospital.
  • 28. Günaydın M., Güvenç D., Yıldız L., Aksoy A., Tander B., Bıçakcı Ü., Ayyıldız H.S., Sünter A.T. & Bernay F. (2012). Comparison of substances used for prevention of ıntra-abdominal adhesions: an experimental study in rats. J Med Sci, 32:337–345.
  • 29. Şafak Ş. (2016). Investigation of usage performance of electrospun nanofibrous mats produced from biodegradable polymers as surgical adhesion barrier. Ph.D. Dissertation: Uludag University.
  • 30. Zong X., Li S., Chen E., Garlick B., Kim K.S., Fang D. & Chu B. (2004). Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly (lactide-co-glycolide)-based membranes. Ann Surg, 240:910–915.
  • 31. Dinarvand P., Hashemi S.M., Seyedjafari E., Shabani I., Mohammadi-Sangcheshmeh A., Farhadian S. & Soleimani M. (2012). Function of poly (lactic-co-glycolic acid) nanofiber in reduction of adhesion bands. J Surg Res, 172:1–9.
  • 32. Chang J.J., Lee Y.H., Wu M.H., Yang M.C. & Chien C.T. (2012). Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohyd Polym, 88:1304–1312.
  • 33. Shi R., Xue J., Wang H., Wang R., Gong M., Chen D. & Tian W. (2015). Fabrication and evaluation of a homogeneous electrospun PCL–gelatin hybrid membrane as an anti-adhesion barrier for craniectomy. J Mater Chem B, 3:4063–4073.
  • 34. Lee Y.W., Chu B., Lee Y.G., Kim N.H., Kim J.H., Kim K.I. & Kwon S.W. (2009). Efficacy and safety of the electrospun nanofibrous adhesion barrier for laparoscopic surgery in a rabbit model. J Korean Surg Soc, 76:73–80.
  • 35. Bölgen N., Vargel I., Korkusuz P., Menceloğlu Y.Z. & Pişkin E. (2007). In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B, 81:530–543.
  • 36. Adegani J.F., Seyedjafari E., Gheibi N., Soleimani M. & Sahmani M. (2016). Prevention of adhesion bands by ibuprofen-loaded PLGA nanofibers. Biotechnol Progr, 32:990–997.
  • 37. Shin Y.C., Yang W.J., Lee J.H., Oh J.W., Kim T.W., Park J.C., Hyon S.H. & Han D.W. (2014). PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions. Int J Nanomedicine, 9:4067–4078.
  • 38. Chen C.H., Chen S.H., Shalumon K.T. & Chen J.P. (2015). Dual functional core–sheath electrospun hyaluronic acid/polycaprolactone nanofibrous membranes embedded with silver nanoparticles for prevention of peritendinous adhesion. Acta Biomater, 26:225–235.
  • 39. Şafak Ş. & Karaca E. (2017). Production and crosslinking of polysaccharide based nanofibrous mat for biomedical applications. Uludag University JFE, 22:127–144.
  • 40. Fischer R.L., McCoy M.G. & Grant S.A. (2012). Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci Mater M, 23:1645–1654.
  • 41. Lu P.L., Lai J.Y., Ma D.H.K. & Hsiue G.H. (2008). Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles:characterization and interaction with corneal endothelial cells. J Biomat Sci Polym E, 19:1–18.
  • 42. Xu S., Li J., He A., Liu W., Jiang X., Zheng J., Han C.C., Hsiao B.S., Chu B. & Fang D. (2009). Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes. Polymer, 50:3762–3769
  • 43. Tomihata K, & Ikada Y. (1997). Crosslinking of hyaluronic acid with water-soluble carbodiimide. J Biomed Mater Res, 37:243–251.
  • 44. Sinha M.K., Das B.R., Srivastava A. & Saxena A.K. (2013). Needleless electrospinning and coating of poly vinyl alcohol with cross-linking agent via in-situ technique. Int J Text Fash Technol, 3:29–38.
  • 45. Baji A., Mai Y.W., Wong S.C., Abtahi M. & Chen P. (2010). Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol, 70:703–718.
  • 46. Hatipoğlu E. (2011). Ameliyat sonrası karın içi yapışıklıkların önlenmesinde sodyum hyaluronat karboksimetilselüloz membran, polietilen glikol - lysine ve hyaluronik asitin etkinliğinin wistar albino tipi sıçanlarda yapılan deneysel çalışma ile araştırılması. Ph.D. Dissertation: Istanbul University.
  • 47. Ma Z., Kotaki M., Yong T., He W. & Ramakrishna S. (2005). Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials, 26:2527–2536.
  • 48. Yang D.J., Chen F., Xiong Z.C., Xiong C.D. & Wang Y.Z. (2009). Tissue anti-adhesion potential of biodegradable PELA electrospun membranes. Acta Biomater, 5:2467–2474.
  • 49. Lee J.H., Lee S.J., Khang G. & Lee H.B. (2000). The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient. J Colloid Interf Sci, 230:84–90.
  • 50. Mayes S., Schmidth C.E. & Peterson D. (2012). Anti-adhesive barrier membrane using alginate and hyaluronic acid for biomedical aplications. Patent 0088832- A1, USA

IN VITRO EVALUATION OF ELECTROSPUN POLYSACCHARIDE BASED NANOFIBROUS MATS AS SURGICAL ADHESION BARRIERS

Year 2020, Volume: 30 Issue: 2, 99 - 107, 28.06.2020
https://doi.org/10.32710/tekstilvekonfeksiyon.548460

Abstract

Postoperative adhesions are one of the most important
problems that the patients and surgeons face. In this study, nanofibrous mats
as a novel surgical adhesion barrier were produced from polysaccharide-based
polymers, hyaluronic acid, carboxymethyl cellulose and sodium alginate, via
electrospinning. The produced nanofibrous mats were crosslinked with
1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride
and
N-hydroxysulfosuccinimide. Furthermore, the morphology, and the in vitro degradation, cytotoxicity and
cell adherence potential of the nanofibrous mats aimed to be used as adhesion
barriers were evaluated and compared with a commercial adhesion barrier.
After the crosslinking process,
the nanofibrous structure was maintained, and the diameters of resulting
nanofibers were below 300 nm.
Results of the in vitro experiment showed that the
nanofibrous mats have maintained their physical structures during the critical
period for adhesion formation, and had non-adherent cell feature and non-cytotoxic
nature required for an ideal adhesion barrier.

References

  • 1. Deitzel J.M., Kleinmeyer J., Harris DEA., & Tan NB. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42:261–272.
  • 2. Supaphol P., Suwantong O., Sangsanoh P., Srinivasan S., Jayakumar R. & Nair SV. (2012). Electrospinning of biocompatible polymers and their potentials in biomedical applications. Adv Polym Sci, 246:213–240.
  • 3. Ramakrishna S., Fujıhara K., Teo WE., Lim TC. & Ma Z. (2005). An introduction to electrospinning and nanofibers. Singapore: World Scientific Publishing Co, 396 p.
  • 4. Patanaik A., Anandjiwala RD., Rengasamy RS., Ghosh A. & Pal H. (2007). Nanotechnology in fibrous materials- a new perspective. Text Prog, 39:67-120.
  • 5. Huang C., Chen S., Lai C., Reneker DH., Qiu H., Ye Y. & Hou H. (2006). Electrospun polymer nanofibres with small diameters. Nanotechnology, 17:1558–1563.
  • 6. Kotek R. (2008). Recent advances in polymer fibers. Polym. Rev. 48, 221–229.
  • 7. Zhang X., Reagan R.M. & Kaplan D.L. (2009). Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliver Rev, 61:988–1006. 8. Amiraliyan N., Nouri M. & Kish M.H. (2009). Effects of some electrospinning parameters on morphology of natural silk-based nanofibers. J Appl Polym Sci, 113:226–234.
  • 9. Tucker N., Stanger J.J., Staiger M.P., Razzaq H. & Hofman K. (2012). The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fabr Fiber, 7:63–72.
  • 10. Valizadeh A. & Farkhani S.M. (2014). Electrospinning and electrospun nanofibres. IET Nanobiotechnoloy, 8:83–92.
  • 11. Cengiz F., Krucinska I., Gliscinska E., Chrzanowski M. & Göktepe F. (2009). Comparative analysis of various electrospinning methods of nanofibre formation. Fibres Text East Eur, 17:13–19.
  • 12. Şafak Ş., Düzyer Ş. & Karaca E. (2016). Evaluation of biocompatibility of fibroin-based electrospun nanofibrous mats for medical applications. Ind Textila, 67:3–9.
  • 13. Jian F., HaiTao N., Tong L. & XunGai W. (2008). Applications of electrospun nanofibers. Chinese Sci Bull, 15:2265–2286.
  • 14. Vanugopal J.R., Zhang Y. & Ramakrishna S. (2006). In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs, 30:440–446.
  • 15. Yoo H.S., Kim T.G. & Park T.G. (2009). Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliver Rev, 61:1033–1042.
  • 16. Kenawy E.R., Abdel-Hay F.I., El-Newehy M.H. & Wnek G.E. (2009). Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys, 113:296–302.
  • 17. Shelke N.B., James R., Laurencin C.T. & Kumbar S.G. (2014). Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Avdan Technol, 25:448–460.
  • 18. Ji Y., Ghosh K., Li B., Sokolov J.C., Clark R.A. & Rafailovich M.H. (2006). Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol Biosci, 6:811–817.
  • 19. Schante C.E., Zuber G., Herlin C. & Vandamme T.F. (2011). Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohyd Polym, 85:469–489.
  • 20. Aytar P., Buruk Y. & Çabuk A. (2013). Streptecoccus equi ile hyaluronik asit üretiminde optimum koşullarin plackett-burman yöntemi ile belirlenmesi. Elektronik Mikrobiyoloji Dergisi, 11:28–35.
  • 21. Collins M.N. & Birkinshaw C. (2013). Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohyd Polym, 92:1262–1279.
  • 22. Qiu X. & Hu S. (2013). Smart materials based on cellulose: a review of the preparations, properties and applications. Materials, 6:738–781.
  • 23. Klemm D., Heublein B., Fink H.P. & Bohn A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit, 44:3358–3393.
  • 24. Qin Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polym Int, 57:171–180.
  • 25. Üstündağ C.G., Karaca E., Özbek S. & Çavuşoğlu İ. (2010). In vivo evaluation of electrospun poly (vinyl alcohol)/sodium alginate nanofibrous mat as wound dressing. Tekst Konfeksiyon , 20:290–298.
  • 26. Şahiner İ.T. (2011). Simvastatin yüklü polipropilen yama ile onarilan karın duvarı defektlerinde batın içi yapışıklıkların karşılaştırılması. Ph.D. Dissertation: Kırıkkale University.
  • 27. Yeğenoğlu A. (2005). Postoperatif intraperitoneal adezyonların önlenmesinde değişik dozlardaki heparin ve seprafilm’in etkinliklerinin karşılaştırılması. Ph.D. Dissertation: Dr. Lütfi Kırdar Education and Research Hospital.
  • 28. Günaydın M., Güvenç D., Yıldız L., Aksoy A., Tander B., Bıçakcı Ü., Ayyıldız H.S., Sünter A.T. & Bernay F. (2012). Comparison of substances used for prevention of ıntra-abdominal adhesions: an experimental study in rats. J Med Sci, 32:337–345.
  • 29. Şafak Ş. (2016). Investigation of usage performance of electrospun nanofibrous mats produced from biodegradable polymers as surgical adhesion barrier. Ph.D. Dissertation: Uludag University.
  • 30. Zong X., Li S., Chen E., Garlick B., Kim K.S., Fang D. & Chu B. (2004). Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly (lactide-co-glycolide)-based membranes. Ann Surg, 240:910–915.
  • 31. Dinarvand P., Hashemi S.M., Seyedjafari E., Shabani I., Mohammadi-Sangcheshmeh A., Farhadian S. & Soleimani M. (2012). Function of poly (lactic-co-glycolic acid) nanofiber in reduction of adhesion bands. J Surg Res, 172:1–9.
  • 32. Chang J.J., Lee Y.H., Wu M.H., Yang M.C. & Chien C.T. (2012). Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohyd Polym, 88:1304–1312.
  • 33. Shi R., Xue J., Wang H., Wang R., Gong M., Chen D. & Tian W. (2015). Fabrication and evaluation of a homogeneous electrospun PCL–gelatin hybrid membrane as an anti-adhesion barrier for craniectomy. J Mater Chem B, 3:4063–4073.
  • 34. Lee Y.W., Chu B., Lee Y.G., Kim N.H., Kim J.H., Kim K.I. & Kwon S.W. (2009). Efficacy and safety of the electrospun nanofibrous adhesion barrier for laparoscopic surgery in a rabbit model. J Korean Surg Soc, 76:73–80.
  • 35. Bölgen N., Vargel I., Korkusuz P., Menceloğlu Y.Z. & Pişkin E. (2007). In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B, 81:530–543.
  • 36. Adegani J.F., Seyedjafari E., Gheibi N., Soleimani M. & Sahmani M. (2016). Prevention of adhesion bands by ibuprofen-loaded PLGA nanofibers. Biotechnol Progr, 32:990–997.
  • 37. Shin Y.C., Yang W.J., Lee J.H., Oh J.W., Kim T.W., Park J.C., Hyon S.H. & Han D.W. (2014). PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions. Int J Nanomedicine, 9:4067–4078.
  • 38. Chen C.H., Chen S.H., Shalumon K.T. & Chen J.P. (2015). Dual functional core–sheath electrospun hyaluronic acid/polycaprolactone nanofibrous membranes embedded with silver nanoparticles for prevention of peritendinous adhesion. Acta Biomater, 26:225–235.
  • 39. Şafak Ş. & Karaca E. (2017). Production and crosslinking of polysaccharide based nanofibrous mat for biomedical applications. Uludag University JFE, 22:127–144.
  • 40. Fischer R.L., McCoy M.G. & Grant S.A. (2012). Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci Mater M, 23:1645–1654.
  • 41. Lu P.L., Lai J.Y., Ma D.H.K. & Hsiue G.H. (2008). Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles:characterization and interaction with corneal endothelial cells. J Biomat Sci Polym E, 19:1–18.
  • 42. Xu S., Li J., He A., Liu W., Jiang X., Zheng J., Han C.C., Hsiao B.S., Chu B. & Fang D. (2009). Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes. Polymer, 50:3762–3769
  • 43. Tomihata K, & Ikada Y. (1997). Crosslinking of hyaluronic acid with water-soluble carbodiimide. J Biomed Mater Res, 37:243–251.
  • 44. Sinha M.K., Das B.R., Srivastava A. & Saxena A.K. (2013). Needleless electrospinning and coating of poly vinyl alcohol with cross-linking agent via in-situ technique. Int J Text Fash Technol, 3:29–38.
  • 45. Baji A., Mai Y.W., Wong S.C., Abtahi M. & Chen P. (2010). Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol, 70:703–718.
  • 46. Hatipoğlu E. (2011). Ameliyat sonrası karın içi yapışıklıkların önlenmesinde sodyum hyaluronat karboksimetilselüloz membran, polietilen glikol - lysine ve hyaluronik asitin etkinliğinin wistar albino tipi sıçanlarda yapılan deneysel çalışma ile araştırılması. Ph.D. Dissertation: Istanbul University.
  • 47. Ma Z., Kotaki M., Yong T., He W. & Ramakrishna S. (2005). Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials, 26:2527–2536.
  • 48. Yang D.J., Chen F., Xiong Z.C., Xiong C.D. & Wang Y.Z. (2009). Tissue anti-adhesion potential of biodegradable PELA electrospun membranes. Acta Biomater, 5:2467–2474.
  • 49. Lee J.H., Lee S.J., Khang G. & Lee H.B. (2000). The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient. J Colloid Interf Sci, 230:84–90.
  • 50. Mayes S., Schmidth C.E. & Peterson D. (2012). Anti-adhesive barrier membrane using alginate and hyaluronic acid for biomedical aplications. Patent 0088832- A1, USA
There are 49 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Şerife Şafak

Özgür Vatan

Nilüfer Çinkılıç

Esra Karaca

Publication Date June 28, 2020
Submission Date April 2, 2019
Acceptance Date March 10, 2020
Published in Issue Year 2020 Volume: 30 Issue: 2

Cite

APA Şafak, Ş., Vatan, Ö., Çinkılıç, N., Karaca, E. (2020). IN VITRO EVALUATION OF ELECTROSPUN POLYSACCHARIDE BASED NANOFIBROUS MATS AS SURGICAL ADHESION BARRIERS. Textile and Apparel, 30(2), 99-107. https://doi.org/10.32710/tekstilvekonfeksiyon.548460

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.