Research Article
BibTex RIS Cite

Evaluation of orthodontic bracket bonding strength on demineralized enamel: Effects of remineralization agents and SEM examination

Year 2023, Volume: 14 Issue: 4, 744 - 752, 30.12.2023
https://doi.org/10.18663/tjcl.1380618

Abstract

Aim: To evaluate the shear bond strength (SBS) of orthodontic brackets bonded to demineralized enamel treated with four different remineralization agents and examine enamel surfaces using scanning electron microscopy (SEM).
Material and Methods: In this in vitro study, 120 premolar teeth were examined. The premolars were divided into six groups as; negative control (Group NC) with erosion remineralization cyclus were applied without any treatment agent, positive control (Group PC), treated with fluoride (Group F), with combined fluoride and diode laser (Group F+D), with CPP-ACP (Group M) and treated with nano-hydroxyapetite (Group B). Erosion remineralization cycle were applied to all samples except PC group. For each group, 20 samples were tested in SBS and examined using scanning electron microscopy (SEM).
Results: There was a statistically significant difference between groups in terms of the SBS values of the orthodontic brackets (p˂0.001). There was no statistically significant difference between Group M and Group B (p = 0.375). There was a significant difference in all other binary comparisons (p˂0.001). The sequence in terms of the SBS values of orthodontic brackets applied after erosion remineralization cycle of the groups were; Group NC (sound enamel)>Group B~Group M >Group F+D >Group F >Group PC (eroded enamel). SEM examinations corroborated the findings.
Conclusions: It was determined that remineralization materials applied in all study groups significantly increased the shear bond strength values of the eroded tooth surfaces. Group M and Group B were more efficient than other groups providing clinically acceptable SBS values for the bonding of orthodontic brackets to previously treated demineralized enamel surfaces.

References

  • Ozel E, Gokce K. Sport drinks and dental erosion. J Faculty Dent Ataturk University. 2006;Suppl1:14-17.
  • Johansson AK, Sorvari R, Birkhed D, Meurman JH. Dental erosion in deciduous teeth—an in vivo and in vitro study. J Dent. 2001;29:5:333-340.
  • Attin T, Deifuss H, Hellwig E. Influence of acidified fluoride gel on abrasion resistance of eroded enamel. Caries Res. 1999;33:2:135-139.
  • Hughes JA, West NX, Addy M. The protective effect of fluoride treatments against enamel erosion in vitro. J Oral Rehabil. 2004;31:4:357-363.
  • Wiegand A, Waldheim E, Sener B, Magalhães AC, Attin T. Comparison of the Effects of TiF4 and NaF Solutions at pH 1.2 and 3.5 on Enamel Erosion in vitro. Caries Res. 2009;43:4:269-277.
  • Chersoni S, Bertacci A, Pashley DH, Tay FR, Montebugnoli L, Prati C. In vivo effects of fluoride on enamel permeability. Clin Oral Investig. 2011;15:4:443-449.
  • Gorken F,Erdem A, İkikarakayalı G, Sepet E.The Effects of Nano-Hydroxyapatite (n-HAp) Toothpastes on Remineralization of Enamel. J Istanbul Univ Fac Dent. 2013;47:2:81-88.
  • Varol E, Varol S. Fluorosis as an environmental disease and its effect on human health. TAF Prev.Med Bul. 2010;9:3:233-238.
  • Castellan CS, Luiz AC, Bezinelli LM, et al. In vitro evaluation of enamel demineralization after Er:YAG and Nd:YAG laser irradiation on primary teeth. Photomed Laser Surg. 2007;25:2:85-90.
  • Hossain MMI, Hossain M, Kimura Y, Kinoshita JI, Yamada Y, Matsumoto K. Acquired acid resistance of enamel and dentin by CO2 laser irradiation with sodium fluoride solution. J Clin Laser Med Surg. 2002;20:2:77-82.
  • Magalhães AC, Rios D, Machado MADAM, et al. Effect of Nd:YAG irradiation and fluoride application on dentine resistance to erosion in vitro. Photomed Laser Surg. 2008;26:6:559-563.
  • Ana PA, Bachmann L, Zezell DM. Lasers effects on enamel for caries prevention. Laser Phys. 2006;16:5:865-875.
  • Villalba-Moreno J, González-Rodríguez A, López-González JDD, Bolaños-Carmona MV, Pedraza-Muriel V. Increased fluoride uptake in human dental specimens treated with diode laser. Lasers Med Sci. 2007;22:3:137-142.
  • Tepper SA, Zehnder M, Pajarola GF, Schmidlin PR. Increased fluoride uptake and acid resistance by CO2 laser-irradiation through topically applied fluoride on human enamel in vitro. J Dent. 2004;32:8:635-641.
  • Reynolds EC, Riley PF, Adamson NJ. A Selective Precipitation Purification Procedure for Multiple Phosphoseryl-Containing Peptides and Methods for Their Identification. Anal Biochem. 1994;217:2:277-284.
  • Reynolds EC. Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: A review. Special Care in Dentistry. 1998;18:1:8-16.
  • Somasundaram P, Vimala N, Mandke LG. Protective potential of casein phosphopeptide amorphous calcium phosphate containing paste on enamel surfaces. J Conserv Dent. 2013;16:2:152.
  • Esteves-Oliveira M, Santos NM, Meyer-Lueckel H, Wierichs RJ, Rodrigues JA. Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro. Clin Oral Investig. 2017;21:1:291-300.
  • Roveri N, Battistella E, Bianchi CL, et al. Surface enamel remineralization: Biomimetic apatite nanocrystals and fluoride ions different effects. J Nanomater. 2009;2009:1-9
  • Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A. Methodology and Models in Erosion Research: Discussion and Conclusions. Caries Res. 2011;45:Suppl. 1:69-77.
  • West NX, Davies M, Amaechi BT. In vitro and in situ Erosion Models for Evaluating Tooth Substance Loss. Caries Res. 2011;45:Suppl. 1:43-52.
  • Reynolds IR. A Review of Direct Orthodontic Bonding. Br J Orthod. 1975;2:3:171-178.
  • Uysal T, Baysal A, Uysal B, Aydinbelge M, Al-Qunaian T. Do fluoride and casein phosphopeptide-amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 2011;81:3:490-495.
  • Ortiz-Ruiz AJ, Martínez-Marco JF, Pérez-Silva A, Serna-Muñoz C, Cabello I, Banerjee A. Influence of Fluoride Varnish Application on Enamel Adhesion of a Universal Adhesive. J Adhes Dent. 2021;23:1:47-56.
  • Dilber E, Akin M, Yavuz T, Erdem A. Effects of Different Demineralization-Inhibiting Methods on the Shear Bond Strength of Glass-Ceramics. J Prosthodont. 2015;24:5:407-413.
  • Alsherif AA, Farag MA, Helal MB. Efficacy of Nano Silver Fluoride and/or Diode Laser In Enhancing Enamel Anticariogenicity around orthodontic brackets. BDJ Open 2023 9:1. 2023;9:1:1-9.
  • Chin-Ying SH, Xiaoli G, Jisheng P, Wefel JS. Effects of CO2 laser on fluoride uptake in enamel. J Dent. 2004;32:2:161-167.
  • Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res. 1997;76:9:1587-1595.
  • Oshiro M, Yamaguchi K, Takamizawa T, et al. Effect of CPP-ACP paste on tooth mineralization: an FE-SEM study. J Oral Sci. 2007;49:2:115-120.
  • Dunn WJ. Shear bond strength of an amorphous calcium-phosphate–containing orthodontic resin cement. American Journal of Orthodontics and Dentofacial Orthopedics. 2007;131:2:243-247.
  • Kecik D, Cehreli SB, Sar C, Unver B. Effect of acidulated phosphate fluoride and casein phosphopeptide-amorphous calcium phosphate application on shear bond strength of orthodontic brackets. Angle Orthod. 2008;78:1:129-133.
  • Al-Kawari HM, Al-Jobair AM. Effect of different preventive agents on bracket shear bond strength: In vitro study. BMC Oral Health. 2014;14:1:1-6.
  • Cossellu G, Lanteri V, Butera A, Sarcina M, Farronato G. Effects of six different preventive treatments on the shear bond strength of orthodontic brackets: in vitro study. Acta Biomater Odontol Scand. 2015;1:1:13-17.
  • Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomedical Materials. 2009;4:3:034104.
  • Nassur C, Alexandria AK, Pomarico L, De Sousa VP, Cabral LM, Maia LC. Characterization of a new TiF4 and β-cyclodextrin inclusion complex and its in vitro evaluation on inhibiting enamel demineralization. Arch Oral Biol. 2013;58:3:239-247.
  • Magalhães AC, Romanelli AC, Rios D, et al. Effect of a single application of TiF4 and NaF varnishes and solutions combined with Nd:YAG laser irradiation on enamel erosion in vitro. Photomed Laser Surg. 2011;29:8:537-544.
  • Hemingway CA, White AJ, Shellis RP, Addy M, Parker DM, Barbour ME. Enamel erosion in dietary acids: inhibition by food proteins in vitro. Caries Res. 2010;44:6:525-530.
  • Swarup J, Rao A. Enamel surface remineralization: Using synthetic nanohydroxyapatite. Contemp Clin Dent. 2012;3:4:433-436.
  • Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD, Kim BI. Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng Mater. 2006;309-311 I:537-540.
  • Gjorgievska ES, Nicholson JW, Slipper IJ, Stevanovic MM. Remineralization of Demineralized Enamel by Toothpastes: A Scanning Electron Microscopy, Energy Dispersive X-Ray Analysis, and Three-Dimensional Stereo-Micrographic Study. Microscopy and Microanalysis. 2013;19:3:587-595.

Farklı yöntemlerle tedavi edilen erozyonlu mine yüzeyine uygulanan ortodontik braketlerin bağlanma dayanımlarının karşılaştırılması

Year 2023, Volume: 14 Issue: 4, 744 - 752, 30.12.2023
https://doi.org/10.18663/tjcl.1380618

Abstract

Amaç: Çalışmanın amacı ortodontik braketlerin, dört farklı remineralizasyon ajanı ile işlenmiş demineralize mineye bağlanma dayanımının (Shear Bond Strength- SBS) değerlendirmesi ve taramalı elektron mikroskobu (SEM) kullanarak mine yüzeylerinin incelenmesidir.
Gereç ve Yöntemler: Bu in vitro çalışmada, 120 premolar diş incelenmiştir. Premolar dişler 20’şer dişin olduğu altı gruba ayrıldı: negatif kontrol (Grup NC)- herhangi bir tedavi ajanı uygulanmadan erozyon remineralizasyon döngüsü uygulanan grup, pozitif kontrol (Grup PC), florür ile tedavi edilen grup (Grup F), kombinasyon halinde florür ve diyot lazer ile tedavi edilen grup (Grup F+D), CPP-ACP ile tedavi edilen grup (Grup M) ve nano-hidroksiapatit ile tedavi edilen grup (Grup B). PC grubu hariç tüm örneklerde erozyon remineralizasyon döngüsü uygulandı. Her bir grup için 20 örnek, yapışma dayanımı SBS testine tabi tutuldu ve SEM kullanılarak incelendi.
Bulgular: Ortodontik braketlerin SBS değerleri açısından gruplar arasında istatistiksel olarak anlamlı fark tespit edildi (p˂0.001). Grup M ve Grup B arasında istatistiksel olarak anlamlı bir fark bulunmamaktaydı (p = 0.375). Diğer tüm ikili karşılaştırmalarda önemli bir fark vardı (p˂0.001). Grupların erozyon remineralizasyon döngüsü sonrasında uygulanan ortodontik braketlerin SBS değerleri sırası şu şekildeydi; Grup NC (sağlam mine)> Grup B ~ Grup M> Grup F+D> Grup F> Grup PC (erozyona uğramış mine). SEM incelemeleri SBS bulgularını destekler niteliteydi.
Sonuç: Çalışmamızdaki tüm gruplara uygulanan remineralizasyon materyallerinin, erozyona uğramış diş yüzeylerinin yapışma dayanım değerlerini önemli ölçüde arttırdığı belirlendi. Grup M ve Grup B, demineralize mine yüzeylerine ortodontik braketlerin yapıştırılması için klinik olarak kabul edilebilir SBS değerleri sağlama konusunda diğer gruplardan daha etkili bulundu.

References

  • Ozel E, Gokce K. Sport drinks and dental erosion. J Faculty Dent Ataturk University. 2006;Suppl1:14-17.
  • Johansson AK, Sorvari R, Birkhed D, Meurman JH. Dental erosion in deciduous teeth—an in vivo and in vitro study. J Dent. 2001;29:5:333-340.
  • Attin T, Deifuss H, Hellwig E. Influence of acidified fluoride gel on abrasion resistance of eroded enamel. Caries Res. 1999;33:2:135-139.
  • Hughes JA, West NX, Addy M. The protective effect of fluoride treatments against enamel erosion in vitro. J Oral Rehabil. 2004;31:4:357-363.
  • Wiegand A, Waldheim E, Sener B, Magalhães AC, Attin T. Comparison of the Effects of TiF4 and NaF Solutions at pH 1.2 and 3.5 on Enamel Erosion in vitro. Caries Res. 2009;43:4:269-277.
  • Chersoni S, Bertacci A, Pashley DH, Tay FR, Montebugnoli L, Prati C. In vivo effects of fluoride on enamel permeability. Clin Oral Investig. 2011;15:4:443-449.
  • Gorken F,Erdem A, İkikarakayalı G, Sepet E.The Effects of Nano-Hydroxyapatite (n-HAp) Toothpastes on Remineralization of Enamel. J Istanbul Univ Fac Dent. 2013;47:2:81-88.
  • Varol E, Varol S. Fluorosis as an environmental disease and its effect on human health. TAF Prev.Med Bul. 2010;9:3:233-238.
  • Castellan CS, Luiz AC, Bezinelli LM, et al. In vitro evaluation of enamel demineralization after Er:YAG and Nd:YAG laser irradiation on primary teeth. Photomed Laser Surg. 2007;25:2:85-90.
  • Hossain MMI, Hossain M, Kimura Y, Kinoshita JI, Yamada Y, Matsumoto K. Acquired acid resistance of enamel and dentin by CO2 laser irradiation with sodium fluoride solution. J Clin Laser Med Surg. 2002;20:2:77-82.
  • Magalhães AC, Rios D, Machado MADAM, et al. Effect of Nd:YAG irradiation and fluoride application on dentine resistance to erosion in vitro. Photomed Laser Surg. 2008;26:6:559-563.
  • Ana PA, Bachmann L, Zezell DM. Lasers effects on enamel for caries prevention. Laser Phys. 2006;16:5:865-875.
  • Villalba-Moreno J, González-Rodríguez A, López-González JDD, Bolaños-Carmona MV, Pedraza-Muriel V. Increased fluoride uptake in human dental specimens treated with diode laser. Lasers Med Sci. 2007;22:3:137-142.
  • Tepper SA, Zehnder M, Pajarola GF, Schmidlin PR. Increased fluoride uptake and acid resistance by CO2 laser-irradiation through topically applied fluoride on human enamel in vitro. J Dent. 2004;32:8:635-641.
  • Reynolds EC, Riley PF, Adamson NJ. A Selective Precipitation Purification Procedure for Multiple Phosphoseryl-Containing Peptides and Methods for Their Identification. Anal Biochem. 1994;217:2:277-284.
  • Reynolds EC. Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: A review. Special Care in Dentistry. 1998;18:1:8-16.
  • Somasundaram P, Vimala N, Mandke LG. Protective potential of casein phosphopeptide amorphous calcium phosphate containing paste on enamel surfaces. J Conserv Dent. 2013;16:2:152.
  • Esteves-Oliveira M, Santos NM, Meyer-Lueckel H, Wierichs RJ, Rodrigues JA. Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro. Clin Oral Investig. 2017;21:1:291-300.
  • Roveri N, Battistella E, Bianchi CL, et al. Surface enamel remineralization: Biomimetic apatite nanocrystals and fluoride ions different effects. J Nanomater. 2009;2009:1-9
  • Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A. Methodology and Models in Erosion Research: Discussion and Conclusions. Caries Res. 2011;45:Suppl. 1:69-77.
  • West NX, Davies M, Amaechi BT. In vitro and in situ Erosion Models for Evaluating Tooth Substance Loss. Caries Res. 2011;45:Suppl. 1:43-52.
  • Reynolds IR. A Review of Direct Orthodontic Bonding. Br J Orthod. 1975;2:3:171-178.
  • Uysal T, Baysal A, Uysal B, Aydinbelge M, Al-Qunaian T. Do fluoride and casein phosphopeptide-amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 2011;81:3:490-495.
  • Ortiz-Ruiz AJ, Martínez-Marco JF, Pérez-Silva A, Serna-Muñoz C, Cabello I, Banerjee A. Influence of Fluoride Varnish Application on Enamel Adhesion of a Universal Adhesive. J Adhes Dent. 2021;23:1:47-56.
  • Dilber E, Akin M, Yavuz T, Erdem A. Effects of Different Demineralization-Inhibiting Methods on the Shear Bond Strength of Glass-Ceramics. J Prosthodont. 2015;24:5:407-413.
  • Alsherif AA, Farag MA, Helal MB. Efficacy of Nano Silver Fluoride and/or Diode Laser In Enhancing Enamel Anticariogenicity around orthodontic brackets. BDJ Open 2023 9:1. 2023;9:1:1-9.
  • Chin-Ying SH, Xiaoli G, Jisheng P, Wefel JS. Effects of CO2 laser on fluoride uptake in enamel. J Dent. 2004;32:2:161-167.
  • Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res. 1997;76:9:1587-1595.
  • Oshiro M, Yamaguchi K, Takamizawa T, et al. Effect of CPP-ACP paste on tooth mineralization: an FE-SEM study. J Oral Sci. 2007;49:2:115-120.
  • Dunn WJ. Shear bond strength of an amorphous calcium-phosphate–containing orthodontic resin cement. American Journal of Orthodontics and Dentofacial Orthopedics. 2007;131:2:243-247.
  • Kecik D, Cehreli SB, Sar C, Unver B. Effect of acidulated phosphate fluoride and casein phosphopeptide-amorphous calcium phosphate application on shear bond strength of orthodontic brackets. Angle Orthod. 2008;78:1:129-133.
  • Al-Kawari HM, Al-Jobair AM. Effect of different preventive agents on bracket shear bond strength: In vitro study. BMC Oral Health. 2014;14:1:1-6.
  • Cossellu G, Lanteri V, Butera A, Sarcina M, Farronato G. Effects of six different preventive treatments on the shear bond strength of orthodontic brackets: in vitro study. Acta Biomater Odontol Scand. 2015;1:1:13-17.
  • Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomedical Materials. 2009;4:3:034104.
  • Nassur C, Alexandria AK, Pomarico L, De Sousa VP, Cabral LM, Maia LC. Characterization of a new TiF4 and β-cyclodextrin inclusion complex and its in vitro evaluation on inhibiting enamel demineralization. Arch Oral Biol. 2013;58:3:239-247.
  • Magalhães AC, Romanelli AC, Rios D, et al. Effect of a single application of TiF4 and NaF varnishes and solutions combined with Nd:YAG laser irradiation on enamel erosion in vitro. Photomed Laser Surg. 2011;29:8:537-544.
  • Hemingway CA, White AJ, Shellis RP, Addy M, Parker DM, Barbour ME. Enamel erosion in dietary acids: inhibition by food proteins in vitro. Caries Res. 2010;44:6:525-530.
  • Swarup J, Rao A. Enamel surface remineralization: Using synthetic nanohydroxyapatite. Contemp Clin Dent. 2012;3:4:433-436.
  • Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD, Kim BI. Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng Mater. 2006;309-311 I:537-540.
  • Gjorgievska ES, Nicholson JW, Slipper IJ, Stevanovic MM. Remineralization of Demineralized Enamel by Toothpastes: A Scanning Electron Microscopy, Energy Dispersive X-Ray Analysis, and Three-Dimensional Stereo-Micrographic Study. Microscopy and Microanalysis. 2013;19:3:587-595.
There are 40 citations in total.

Details

Primary Language English
Subjects Orthodontics and Dentofacial Orthopaedics
Journal Section Orıgınal Artıcle
Authors

Alaattin Tekeli 0009-0002-0366-1659

Serkan Görgülü 0000-0003-1617-573X

Fidan Alakus Sabuncuoglu 0000-0002-5044-457X

Gökhan Serhat Duran 0000-0001-6152-6178

Publication Date December 30, 2023
Submission Date October 24, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2023 Volume: 14 Issue: 4

Cite

APA Tekeli, A., Görgülü, S., Alakus Sabuncuoglu, F., Duran, G. S. (2023). Farklı yöntemlerle tedavi edilen erozyonlu mine yüzeyine uygulanan ortodontik braketlerin bağlanma dayanımlarının karşılaştırılması. Turkish Journal of Clinics and Laboratory, 14(4), 744-752. https://doi.org/10.18663/tjcl.1380618
AMA Tekeli A, Görgülü S, Alakus Sabuncuoglu F, Duran GS. Farklı yöntemlerle tedavi edilen erozyonlu mine yüzeyine uygulanan ortodontik braketlerin bağlanma dayanımlarının karşılaştırılması. TJCL. December 2023;14(4):744-752. doi:10.18663/tjcl.1380618
Chicago Tekeli, Alaattin, Serkan Görgülü, Fidan Alakus Sabuncuoglu, and Gökhan Serhat Duran. “Farklı yöntemlerle Tedavi Edilen Erozyonlu Mine yüzeyine Uygulanan Ortodontik Braketlerin bağlanma dayanımlarının karşılaştırılması”. Turkish Journal of Clinics and Laboratory 14, no. 4 (December 2023): 744-52. https://doi.org/10.18663/tjcl.1380618.
EndNote Tekeli A, Görgülü S, Alakus Sabuncuoglu F, Duran GS (December 1, 2023) Farklı yöntemlerle tedavi edilen erozyonlu mine yüzeyine uygulanan ortodontik braketlerin bağlanma dayanımlarının karşılaştırılması. Turkish Journal of Clinics and Laboratory 14 4 744–752.
IEEE A. Tekeli, S. Görgülü, F. Alakus Sabuncuoglu, and G. S. Duran, “Farklı yöntemlerle tedavi edilen erozyonlu mine yüzeyine uygulanan ortodontik braketlerin bağlanma dayanımlarının karşılaştırılması”, TJCL, vol. 14, no. 4, pp. 744–752, 2023, doi: 10.18663/tjcl.1380618.
ISNAD Tekeli, Alaattin et al. “Farklı yöntemlerle Tedavi Edilen Erozyonlu Mine yüzeyine Uygulanan Ortodontik Braketlerin bağlanma dayanımlarının karşılaştırılması”. Turkish Journal of Clinics and Laboratory 14/4 (December 2023), 744-752. https://doi.org/10.18663/tjcl.1380618.
JAMA Tekeli A, Görgülü S, Alakus Sabuncuoglu F, Duran GS. Farklı yöntemlerle tedavi edilen erozyonlu mine yüzeyine uygulanan ortodontik braketlerin bağlanma dayanımlarının karşılaştırılması. TJCL. 2023;14:744–752.
MLA Tekeli, Alaattin et al. “Farklı yöntemlerle Tedavi Edilen Erozyonlu Mine yüzeyine Uygulanan Ortodontik Braketlerin bağlanma dayanımlarının karşılaştırılması”. Turkish Journal of Clinics and Laboratory, vol. 14, no. 4, 2023, pp. 744-52, doi:10.18663/tjcl.1380618.
Vancouver Tekeli A, Görgülü S, Alakus Sabuncuoglu F, Duran GS. Farklı yöntemlerle tedavi edilen erozyonlu mine yüzeyine uygulanan ortodontik braketlerin bağlanma dayanımlarının karşılaştırılması. TJCL. 2023;14(4):744-52.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.