Research Article
BibTex RIS Cite

Improved Spatial Modulation with Mapping Diversity

Year 2024, Volume: 19 Issue: 1, 193 - 202, 28.03.2024
https://doi.org/10.55525/tjst.1334701

Abstract

In this work, mapping diversity technique is exploited for generalized spatial modulation. In this context, multiple constellations, obtained as the solution of the optimization problem that maximizes Euclidean distance between the elements of the signal set, are employed in the active transmit antennas of generalized spatial modulation scheme. Supported with analytical analysis and simulation results, the proposed scheme is shown to enhance the error rate performance of conventional generalized spatial modulation.

References

  • Mietzner J, Schober R, Lampe L, Gerstacker WH, Hoeher PA. Multiple-antenna techniques for wireless communications - a comprehensive literature survey. IEEE Communication Surveys & Tutorials 2009; 11(2):87–105.
  • Zheng L, Tse DNC. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory 2003; 49(5): 1073-1096.
  • Tarokh V, Jafarkhani H, Calderbank A. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 1999; 45(5):1456–1467.
  • Mesleh R, Haas H, Ahn CW, Yun S. Spatial Modulation - A New Low Complexity Spectral Efficiency Enhancing Technique. In: 2006 First International Conference on Communications and Networking; 2006; Beijing, China, pp. 1-5.
  • Jeganathan J, Ghrayeb A, Szczecinski L, Ceron A. Space shift keying modulation for MIMO channels. IEEE Transactions on Wireless Communications 2009; 8(7): 3692-3703.
  • Mesleh RY, Haas H, Sinanovic S, Ahn CW, Yun S. Spatial Modulation. IEEE Transactions on Vehicular Technology 2008; 57(4): 2228-2241.
  • Yang P, Di Renzo M, Xiao Y, Li S, Hanzo L. Design Guidelines for Spatial Modulation. IEEE Communications Surveys & Tutorials 2015; 17(1): 6-26.
  • Maleki M, Bahrami HR, Alizadeh A, Tran NH. On the Performance of Spatial Modulation: Optimal Constellation Breakdown. IEEE Transactions on Communications 2014; 62(1): 144-157.
  • Başar E, Aygölü Ü, Panayırcı E, Poor HV. Space-time block coded spatial modulation. IEEE Transactions on Commun. 2011; 59(3): 823–832.
  • Di Renzo M, Haas H. On Transmit Diversity for Spatial Modulation MIMO: Impact of Spatial Constellation Diagram and Shaping Filters at the Transmitter. IEEE Transactions on Vehicular Technology 2013; 62(6); 2507-2531.
  • Başar E, Aygölü Ü, Panayırcı E, Poor HV. New trellis code design for spatial modulation. IEEE Trans. Wireless Commun. 2011; 10(9): 2670–2680.
  • Younis A, Serafimovski N, Mesleh R, Haas H. Generalised spatial modulation. In: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers; 2010; pp. 1498-1502.
  • Younis A, Basnayaka DA, Haas H. Performance Analysis for Generalised Spatial Modulation. In: European Wireless 2014; 20th European Wireless Conference; 2014; Barcelona, Spain, pp. 1-6.
  • Fu J, Hou C, Xiang W, Yan L, Hou Y. Generalised spatial modulation with multiple active transmit antennas. In 2010 IEEE Globecom Workshops; 2010; Miami, FL, USA, pp. 839-844
  • Wang J, Jia S, Song J. Generalised Spatial Modulation System with Multiple Active Transmit Antennas and Low Complexity Detection Scheme. IEEE Transactions on Wireless Communications 2012; 11(4): 1605-1615.
  • Maleki M, Bahrami HR, Alizadeh A. Constellation design for spatial modulation. In: 2015 IEEE International Conference on Communications (ICC); 2015; London, UK, pp. 2739-2743.
  • Vo BT, Nguyen HH, Tuan HD. Constellation Design for Quadrature Spatial Modulation. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall); 2017; Toronto, ON, Canada, pp. 1-5.
  • Vasavada Y, John BB. Constellation Designs for the Spatial Modulation MIMO Systems. In: 2022 IEEE International Conference on Signal Processing and Communications (SPCOM); 2022, Bangalore, India, pp. 1-5
  • Lin S, Costello DJ, Miller MJ. Automatic-repeat-request error-control schemes. IEEE Communications Magazine 1984; 22(12), 5-17.
  • Benelli G. A new method for the integration of modulation and channel coding in an ARQ protocol. IEEE Transactions on Communications 1992; 40(10): 1594–1606.
  • Samra H, Ding Z, Hahn PM. Symbol mapping diversity design for multiple packet transmissions. IEEE Transactions on Communications 2005; 53(5): 810–817.
  • Szczecinski L, Bacic M. Constellations design for multiple transmissions: maximizing the minimum squared Euclidean distance. In: 2005 Proceedings of IEEE Wireless Communications and Networking Conference (WCNC ’05); 2005; New Orleans, LA, USA, pp.1066–71.
  • Wengerter C, von Elbwart AGE, Seidel E, Velev G, Schmitt MP. Advanced hybrid ARQ technique employing a signal constellation rearrangement. In: 2002 Proceedings of the 56th IEEE Vehicular Technology Conference; 2002; Vancouver, BC, Canada, pp.2002–6.
  • Khormuji MN, Larsson EG. Improving Collaborative Transmit Diversity by Using Constellation Rearrangement. In 2007 IEEE Wireless Communications and Networking Conference, Hong Kong, China, 2007, pp. 803-807,
  • Proakis JG. Digital Communications, 4th ed. New York: McGraw-Hill Higher Education; 2000. ISBN: 9780071181839
  • Chernoff H. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations. The Annals of Mathematical Statistics 1952; 23(4): 493–507.
  • Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. ninth Dover printing, tenth GPO printing New York: Dover, 1964.
  • Simon MK, Alouini MS. Digital Communication over Fading Channels. 2nd ed. New York: John Wiley & Sons, Inc.; 2005. ISBN: 9780471649533.
  • Alouini MS, Goldsmith AJ. A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Transactions on Communications 1999;47(9), 1324-1334.

Eşlemleme Çeşitlemesi ile İyileştirilmiş Uzaysal Modülasyon

Year 2024, Volume: 19 Issue: 1, 193 - 202, 28.03.2024
https://doi.org/10.55525/tjst.1334701

Abstract

Bu çalışmada genelleştirilmiş uzaysal modülasyon için eşlemleme çeşitlemesi tekniğinden faydalanılmıştır. Bu kapsamda, genelleştirilmiş uzaysal modülasyon şemasındaki aktif iletim antenlerinde sinyal kümesindeki elemanlar arası Öklit mesafesini maksimize eden optimizasyon probleminin çözümü olarak elde edilen çoklu işaret kümeleri kullanılmıştır. Tasarlanan şemanın geleneksel uzaysal modülasyon tekniğinin hata oranı performansını iyileştirdiği analitik analiz ve benzetim sonuçları ile desteklenerek gösterilmiştir.

References

  • Mietzner J, Schober R, Lampe L, Gerstacker WH, Hoeher PA. Multiple-antenna techniques for wireless communications - a comprehensive literature survey. IEEE Communication Surveys & Tutorials 2009; 11(2):87–105.
  • Zheng L, Tse DNC. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory 2003; 49(5): 1073-1096.
  • Tarokh V, Jafarkhani H, Calderbank A. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 1999; 45(5):1456–1467.
  • Mesleh R, Haas H, Ahn CW, Yun S. Spatial Modulation - A New Low Complexity Spectral Efficiency Enhancing Technique. In: 2006 First International Conference on Communications and Networking; 2006; Beijing, China, pp. 1-5.
  • Jeganathan J, Ghrayeb A, Szczecinski L, Ceron A. Space shift keying modulation for MIMO channels. IEEE Transactions on Wireless Communications 2009; 8(7): 3692-3703.
  • Mesleh RY, Haas H, Sinanovic S, Ahn CW, Yun S. Spatial Modulation. IEEE Transactions on Vehicular Technology 2008; 57(4): 2228-2241.
  • Yang P, Di Renzo M, Xiao Y, Li S, Hanzo L. Design Guidelines for Spatial Modulation. IEEE Communications Surveys & Tutorials 2015; 17(1): 6-26.
  • Maleki M, Bahrami HR, Alizadeh A, Tran NH. On the Performance of Spatial Modulation: Optimal Constellation Breakdown. IEEE Transactions on Communications 2014; 62(1): 144-157.
  • Başar E, Aygölü Ü, Panayırcı E, Poor HV. Space-time block coded spatial modulation. IEEE Transactions on Commun. 2011; 59(3): 823–832.
  • Di Renzo M, Haas H. On Transmit Diversity for Spatial Modulation MIMO: Impact of Spatial Constellation Diagram and Shaping Filters at the Transmitter. IEEE Transactions on Vehicular Technology 2013; 62(6); 2507-2531.
  • Başar E, Aygölü Ü, Panayırcı E, Poor HV. New trellis code design for spatial modulation. IEEE Trans. Wireless Commun. 2011; 10(9): 2670–2680.
  • Younis A, Serafimovski N, Mesleh R, Haas H. Generalised spatial modulation. In: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers; 2010; pp. 1498-1502.
  • Younis A, Basnayaka DA, Haas H. Performance Analysis for Generalised Spatial Modulation. In: European Wireless 2014; 20th European Wireless Conference; 2014; Barcelona, Spain, pp. 1-6.
  • Fu J, Hou C, Xiang W, Yan L, Hou Y. Generalised spatial modulation with multiple active transmit antennas. In 2010 IEEE Globecom Workshops; 2010; Miami, FL, USA, pp. 839-844
  • Wang J, Jia S, Song J. Generalised Spatial Modulation System with Multiple Active Transmit Antennas and Low Complexity Detection Scheme. IEEE Transactions on Wireless Communications 2012; 11(4): 1605-1615.
  • Maleki M, Bahrami HR, Alizadeh A. Constellation design for spatial modulation. In: 2015 IEEE International Conference on Communications (ICC); 2015; London, UK, pp. 2739-2743.
  • Vo BT, Nguyen HH, Tuan HD. Constellation Design for Quadrature Spatial Modulation. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall); 2017; Toronto, ON, Canada, pp. 1-5.
  • Vasavada Y, John BB. Constellation Designs for the Spatial Modulation MIMO Systems. In: 2022 IEEE International Conference on Signal Processing and Communications (SPCOM); 2022, Bangalore, India, pp. 1-5
  • Lin S, Costello DJ, Miller MJ. Automatic-repeat-request error-control schemes. IEEE Communications Magazine 1984; 22(12), 5-17.
  • Benelli G. A new method for the integration of modulation and channel coding in an ARQ protocol. IEEE Transactions on Communications 1992; 40(10): 1594–1606.
  • Samra H, Ding Z, Hahn PM. Symbol mapping diversity design for multiple packet transmissions. IEEE Transactions on Communications 2005; 53(5): 810–817.
  • Szczecinski L, Bacic M. Constellations design for multiple transmissions: maximizing the minimum squared Euclidean distance. In: 2005 Proceedings of IEEE Wireless Communications and Networking Conference (WCNC ’05); 2005; New Orleans, LA, USA, pp.1066–71.
  • Wengerter C, von Elbwart AGE, Seidel E, Velev G, Schmitt MP. Advanced hybrid ARQ technique employing a signal constellation rearrangement. In: 2002 Proceedings of the 56th IEEE Vehicular Technology Conference; 2002; Vancouver, BC, Canada, pp.2002–6.
  • Khormuji MN, Larsson EG. Improving Collaborative Transmit Diversity by Using Constellation Rearrangement. In 2007 IEEE Wireless Communications and Networking Conference, Hong Kong, China, 2007, pp. 803-807,
  • Proakis JG. Digital Communications, 4th ed. New York: McGraw-Hill Higher Education; 2000. ISBN: 9780071181839
  • Chernoff H. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations. The Annals of Mathematical Statistics 1952; 23(4): 493–507.
  • Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. ninth Dover printing, tenth GPO printing New York: Dover, 1964.
  • Simon MK, Alouini MS. Digital Communication over Fading Channels. 2nd ed. New York: John Wiley & Sons, Inc.; 2005. ISBN: 9780471649533.
  • Alouini MS, Goldsmith AJ. A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Transactions on Communications 1999;47(9), 1324-1334.
There are 29 citations in total.

Details

Primary Language English
Subjects Wireless Communication Systems and Technologies (Incl. Microwave and Millimetrewave)
Journal Section TJST
Authors

Mümtaz Yılmaz 0000-0002-1121-7331

Publication Date March 28, 2024
Submission Date July 30, 2023
Published in Issue Year 2024 Volume: 19 Issue: 1

Cite

APA Yılmaz, M. (2024). Improved Spatial Modulation with Mapping Diversity. Turkish Journal of Science and Technology, 19(1), 193-202. https://doi.org/10.55525/tjst.1334701
AMA Yılmaz M. Improved Spatial Modulation with Mapping Diversity. TJST. March 2024;19(1):193-202. doi:10.55525/tjst.1334701
Chicago Yılmaz, Mümtaz. “Improved Spatial Modulation With Mapping Diversity”. Turkish Journal of Science and Technology 19, no. 1 (March 2024): 193-202. https://doi.org/10.55525/tjst.1334701.
EndNote Yılmaz M (March 1, 2024) Improved Spatial Modulation with Mapping Diversity. Turkish Journal of Science and Technology 19 1 193–202.
IEEE M. Yılmaz, “Improved Spatial Modulation with Mapping Diversity”, TJST, vol. 19, no. 1, pp. 193–202, 2024, doi: 10.55525/tjst.1334701.
ISNAD Yılmaz, Mümtaz. “Improved Spatial Modulation With Mapping Diversity”. Turkish Journal of Science and Technology 19/1 (March 2024), 193-202. https://doi.org/10.55525/tjst.1334701.
JAMA Yılmaz M. Improved Spatial Modulation with Mapping Diversity. TJST. 2024;19:193–202.
MLA Yılmaz, Mümtaz. “Improved Spatial Modulation With Mapping Diversity”. Turkish Journal of Science and Technology, vol. 19, no. 1, 2024, pp. 193-02, doi:10.55525/tjst.1334701.
Vancouver Yılmaz M. Improved Spatial Modulation with Mapping Diversity. TJST. 2024;19(1):193-202.