Research Article
BibTex RIS Cite

Analysis of Coastal Erosion in Yeşilirmak Delta Using Linear Regression Rate Method

Year 2023, Volume: 28 Issue: 3, 847 - 866, 27.12.2023
https://doi.org/10.17482/uumfd.1248184

Abstract

This study investigated erosion along the approximately 18.5 km coastal section of the Yeşilırmak Delta, a nationally important wetland, using remote sensing and Geographic Information Systems (GIS). Landsat-5 TM/Landsat-8 OLI satellite images from 1985 to 2022 (1985, 1990, 1996, 2001, 2006, 2011, 2017, and 2022) were used to determine shoreline changes. The shoreline determination process involved the combination of the normalized difference water index (NDWI) and the modified normalized difference water index (MNDWI). Annual rates of shoreline change were calculated using the linear regression rate (LRR) method within a 95% confidence level. Results showed a maximum erosion rate of -25.8 m/year in Zone-1, located in the western part of the Yeşilırmak River, and -7.7 m/year in Zone2, situated in the eastern part. Erosion affected 61% of the delta, with 34% experiencing high-level erosion, 9% medium-level erosion, and 18% low-level erosion. Overlay analysis identified a total loss of 261.45 ha during 1985–2022, with 179.23 ha in Zone-1 and 82.22 ha in Zone-2. These findings enhance understanding of coastal dynamics by delineating erosion, accretion, and stable areas in the Yeşilırmak Delta. Furthermore, the study highlights the effectiveness of Landsat images and the LRR method in assessing shoreline changes.

References

  • 1. Aladwani, N.S. (2022) Shoreline change rate dynamics analysis and prediction of future positions using satellite imagery for the southern coast of Kuwait: A case study. Oceanologia, 64(3), 417–432. doi:10.1016/j.oceano.2022.02.002
  • 2. Atalay Dutucu, A. (2016) Yeşilırmak Deltası’nda jeomorfolojik değişiklikler ve gelecek ile ilgili öngörüler. Doktora Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • 3. Atalay Dutucu A., Turoğlu, H. ve İkiel, C. (2017) Yeşilırmak Deltası kıyı çizgisi değişimine barajların etkisi. 70. Türkiye Jeoloji Kurultayı, 10–14 Nisan 2017, Ankara.
  • 4. Avcı, K.M., Erkal, T. ve San, B. T. (2003) Yeşilırmak Deltası kıyı çizgisi değişiminin uzaktan algılama ve coğrafi bilgi sistemleri yöntemi ile incelenmesi. Maden Tetkik ve Arama (MTA), Rapor, (10612).
  • 5. Bağcı, H.R. ve Şahin, K. (2018) Yeşilırmak Deltasındaki (Samsun) turistik çekiciliklerin ulaşılabilirlik durumları. International Geography Symposium on the 30th Anniversary of TUCAUM, 3–6 October 2018, Ankara.
  • 6. Baig, M.R.I., Ahmad, I.A., Shahfahad, Tayyab, M. ve Rahman, A. (2020) Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26(4), 361–376. doi:10.1080/19475683.2020.1815839
  • 7. Baral, R., Pradhan, S., Samal, R.N. ve Mishra, S.K. (2018) Shoreline change analysis at Chilika lagoon coast, India using digital shoreline analysis system. Journal of the Indian Society of Remote Sensing, 46(10), 1637–1644. doi:10.1007/s12524-018-0818-7
  • 8. Basheer Ahammed, K.K. ve Pandey, A.C. (2022) Assessment and prediction of shoreline change using multi-temporal satellite data and geostatistics: A case study on the eastern coast of India. Journal of Water and Climate Change, 13(3), 1477–1493. doi:10.2166/wcc.2022.270
  • 9. Bergillos, R.J., Rodríguez‐Delgado, C., Millares, A., Ortega‐Sánchez, M. ve Losada, M.A. (2016) Impact of river regulation on a Mediterranean Delta: Assessment of managed versus unmanaged scenarios. Water Resources Research, 52(7), 5132–5148. doi:10.1002/2015WR018395
  • 10. Bombino, G., Barbaro, G., D'Agostino, D., Denisi, P., Foti, G., Labate, A. ve Zimbone, S.M. (2022) Shoreline change and coastal erosion: The role of check dams. First indications from a case study in Calabria, southern Italy. Catena, 217, 106494. doi:10.1016/j.catena.2022.106494
  • 11. Burningham, H. ve Fernandez-Nunez, M. (2020) Shoreline change analysis. İçinde: Sandy Beach Morphodynamics (s. 439–460). Elsevier.
  • 12. Cambers G. (2001) Coastal hazards and vulnerability. İçinde: Professional Development Programme: Coastal Infrastructure Design, Construction and Maintenance - A Course in Coastal Zone/Island Systems Management, Bölüm 4, 21 s.
  • 13. Can, Ö. ve Taş, B. (2012) Ramsar alanı içinde yer alan Cernek Gölü ve sulak alanının (Kızılırmak Deltası, Samsun) ekolojik ve sosyo-ekonomik önemi. TÜBAV Bilim Dergisi, 5(2), 1–11.
  • 14. Chandrasekar, K., Sesha Sai, M.V.R., Roy, P.S. ve Dwevedi, R.S. (2010) Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. International Journal of Remote Sensing, 31(15), 3987–4005. doi:10.1080/01431160802575653
  • 15. Chang, L., Cheng, L., Huang, C., Qin, S., Fu, C. ve Li, S. (2022) Extracting urban water bodies from Landsat imagery based on mNDWI and HSV transformation. Remote Sensing, 14(22), 5785. doi:10.3390/rs14225785
  • 16. Chenthamil Selvan, S., Kankara, R.S., Markose, V.J., Rajan, B. ve Prabhu, K. (2016) Shoreline change and impacts of coastal protection structures on Puducherry, SE coast of India. Natural Hazards, 83(1), 293– 308. doi:10.1007/s11069-016-2332-y
  • 17. Choung, Y.J. ve Jo, M.H. (2017) Comparison between a machine-learning-based method and a water-index-based method for shoreline mapping using a high-resolution satellite image acquired in Hwado Island, South Korea. Journal of Sensors, 8245204, doi:10.1155/2017/8245204
  • 18. Chu, D.T., Himori, G., Saito, Y., Bui, T.V. ve Aoki, S.I. (2015) Study of beach erosion and evolution of beach profile due to nearshore bar sand dredging. Procedia Engineering, 116, 285–292. doi:10.1016/j.proeng.2015.08.292
  • 19. Das, S.K., Sajan, B., Ojha, C. ve Soren, S. (2021) Shoreline change behavior study of Jambudwip island of Indian Sundarban using DSAS model. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 961–970. doi:10.1016/j.ejrs.2021.09.004
  • 20. Daud, S., Milow, P. ve Zakaria, R.M. (2021) Analysis of shoreline change trends and adaptation of Selangor coastline, using Landsat satellite data. Journal of the Indian Society of Remote Sensing, 49, 1869–1878. doi:10.1007/s12524-020-01218-0
  • 21. Deepika, B., Avinash, K. ve Jayappa, K. (2014) Shoreline change rate estimation and its forecast: remote sensing, geographical information system and statistics-based approach. International Journal of Environmental Science and Technology, 11, 395–416. doi:10.1007/s13762-013-0196-1
  • 22. Dolan, R., Fenster, M.S. ve Holme, S.J. (1991) Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7(3), 723–744.
  • 23. Dutta, D., Kumar, T., Jayaram, C. ve Akram, W. (2022) Shoreline change analysis of hooghly estuary using multi-temporal Landsat data and Digital Shoreline Analysis System. İçinde: Zhang, Y. ve Cheng, Q. (editörler) Geographic Information Systems and Applications in Coastal Studies. IntechOpen. doi:10.5772/intechopen.103030
  • 24. Elfadaly, A., Abutaleb, K., Naguib, D.M. ve Lasaponara, R. (2022) Detecting the environmental risk on the archaeological sites using satellite imagery in Basilicata Region, Italy. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 181–193. doi:10.1016/j.ejrs.2022.01.007
  • 25. Feyisa, G.L., Meilby, H., Fensholt, R. ve Proud, S.R. (2014) Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. doi:10.1016/j.rse.2013.08.029
  • 26. Ford, M. (2011) Shoreline changes on an urban atoll in the Central Pacific Ocean: Majuro Atoll, Marshall Islands. Journal of Coastal Research, 28, 11–22.
  • 27. Gonçalves, R.M., Saleem, A., Queiroz, H.A. ve Awange, J.L. (2019) A fuzzy model integrating shoreline changes, NDVI and settlement influences for coastal zone human impact classification. Applied Geography, 113, 102093. doi:10.1016/j.apgeog.2019.102093
  • 28. https://earthexplorer.usgs.gov/, Erişim Tarihi: 12.12.2022, Konu: Earth Explorer.
  • 29. https://www.statology.org/standard-error-of-regression-slope/, Erişim Tarihi: 26.08.2023, Konu: Standard Error of A Regression Slope.
  • 30. https://www.usgs.gov/landsat-missions/landsat-satellite-missions, Erişim Tarihi: 12.12.2022, Konu: Landsat Satellite Missions.
  • 31. https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products, Erişim Tarihi: 01.01.2023, Konu: Landsat Collection 2 Level-2 Science Products.
  • 32. Islam, M.S. ve Crawford, T.W. (2022) Assessment of spatio-temporal empirical forecasting performance of future shoreline positions. Remote Sensing, 14(24), 6364. doi:10.3390/rs14246364
  • 33. Jackson Jr, C.W., Alexander, C.R. ve Bush, D.M. (2012) Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. Computers & Geosciences, 41, 199–207. doi:10.1016/j.cageo.2011.08.009
  • 34. Karimi, M., Samani, J.M.V. ve Mazaheri, M. (2021) Shoreline spatial and temporal response to natural and human effects in Boujagh National Park, Iran. International Journal of Sediment Research, 36(5), 582– 592. doi:10.1016/j.ijsrc.2021.02.004
  • 35. Khallaghi, S. ve Pontius Jr, R. G. (2022) Area method compared with Transect method to measure shoreline movement. Geocarto International, 37(20), 5963–5984. doi:10.1080/10106049.2021.1926556
  • 36. Köle, M.M. ve Ataol, M. (2016) Yeşilırmak Deltası’nda 2000-2016 yılları arasında gözlenen kıyı erozyonu. Efe, R., Cürebal, İ., Levai, L. (editörler) 4th International Geography Symposium - GEOMED 2016 Book of Proceedings.
  • 37. Kudale, M.D. (2010) Impact of port development on the coastline and the need for protection. Indian Journal of Geo-Marine Science, 39(4), 597–604.
  • 38. Kuleli, T. (2010) Kızılırmak ve Yeşilırmak Deltalarındaki kıyı değişimlerinin Landsat TM ve DSAS ile Belirlenmesi. Türkiye’nin Kıyı ve Deniz Alanları VIII. Ulusal Kongresi Bildiriler Kitabı.
  • 39. Li, R., Liu, J.K. ve Felus, Y. (2001) Spatial modeling and analysis for shoreline change detection and coastal erosion monitoring. Marine Geodesy, 24(1), 1–12. doi:10.1080/01490410121502
  • 40. Liu, Q., Trinder, J.C. ve Turner, I.L. (2017) Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen-Collaroy Beach, Australia. Journal of Applied Remote Sensing, 11(1), 016036. doi:10.1117/1.JRS.11.016036
  • 41. Liu, Q. ve Trinder, J.C. (2018) Sub-pixel technique for time series analysis of shoreline changes based on multispectral satellite imagery. İçinde: Marghany, M (editör) Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure. IntechOpen.
  • 42. Martínez, C., Grez, P.W., Martín, R.A., Acuña, C.E., Torres, I. ve Contreras-López, M. (2022) Coastal erosion in sandy beaches along a tectonically active coast: The Chile study case. Progress in Physical Geography: Earth and Environment, 46(2), 250–271. doi:10.1177/0309133321105719
  • 43. McFeeters, S.K. (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. doi:10.1080/01431169608948714
  • 44. McFeeters, S.K. (2013) Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sensing, 5(7), 3544–3561. doi:10.3390/rs5073544
  • 45. Murray, J., Adam, E., Woodborne, S., Miller, D., Xulu, S. ve Evans, M. (2023) Monitoring shoreline changes along the Southwestern Coast of South Africa from 1937 to 2020 using varied remote sensing data and approaches. Remote Sensing, 15(2), 317. doi:10.3390/rs15020317
  • 46. O'Brien, K., Stocker, J., Barrett, J. ve Hyde, B. (2014) Analysis of shoreline change in Connecticut: 100+ years of erosion and accretion: methodology and summary results. A cooperative effort between the Connecticut Department of Energy & Environmental Protection (DEEP), the Connecticut Sea Grant (CT Sea Grant) and the University of Connecticut Center for Land Use Education and Research (UCONN-CLEAR).
  • 47. Oyedotun, T.D. (2014) Shoreline geometry: DSAS as a tool for historical trend analysis. İçinde: Geomorphological Techniques, Bölüm 3(2.2), s.1–12.
  • 48. Ozturk, D., Beyazit, I. ve Kilic, F. (2015) Spatiotemporal analysis of shoreline changes of the Kizilirmak Delta. Journal of Coastal Research, 31(6), 1389–1402. doi:10.2112/JCOASTRES-D-14-00159.1
  • 49. Ozturk, D. ve Sesli, F.A. (2015) Shoreline change analysis of the Kizilirmak Lagoon Series. Ocean & Coastal Management, 118, 290–308. doi:10.15244/pjoes/58765
  • 50. Reddy, G.O. (2018) Spatial data management, analysis, and modeling in GIS: principles and applications. İçinde: Reddy, G., Singh, S. (editörler) Geospatial Technologies in Land Resources Mapping, Monitoring and Management, cilt 21, s.127–142. Geotechnologies and the Environment, Springer, Cham. doi:10.1007/978-3-319-78711-4_7
  • 51. Salghuna, N.N. ve Bharathvaj, S.A. (2015) Shoreline change analysis for northern part of the Coromandel coast. Aquatic Procedia, 4, 317–324. doi:10.1016/j.aqpro.2015.02.043
  • 52. Singh, K.V., Setia, R., Sahoo, S., Prasad, A. ve Pateriya, B. (2015) Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30(6), 650–661. doi:10.1080/10106049.2014.965757
  • 53. Singh, S., Bhat, J.A., Shah, S. ve Pala, N.A. (2021) Coastal resource management and tourism development in Fiji Islands: A conservation challenge. Environment, Development and Sustainability, 23(3), 3009–3027. doi:10.1007/s10668-020-00764-4
  • 54. Sowmya, K., Sri, M.D., Bhaskar, A.S. ve Jayappa, K.S. (2019) Long-term coastal erosion assessment along the coast of Karnataka, west coast of India. International Journal of Sediment Research, 34(4), 335–344. doi:10.1016/j.ijsrc.2018.12.007
  • 55. Süzen, M.L. ve Özhan, E. (2003) Monitoring shoreline changes at Yesilirmak Delta by remote sensing and GIS. Proceedings of the Sixth International Conference on the Mediterranean Coastal Environment, MEDCOAST 03, 7–11 October 2003, Ravenna, Italy.
  • 56. Tarım ve Orman Bakanlığı (2022) Ulusal Öneme Haiz Sulak Alanlar. https://www.tarimorman.gov.tr/DKMP/Belgeler/Korunan%20Alanlar%20Listesi/3-%20sulak%20alanlar.pdf (Erişim Tarihi: 26.08.2023)
  • 57. Tsoukala, V.K., Katsardi, V., Ηadjibiros, K. ve Moutzouris, C.I. (2015) Beach erosion and consequential impacts due to the presence of harbours in sandy beaches in Greece and Cyprus. Environmental Processes, 2(1), 55–71. doi:10.1007/s40710-015-0096-0
  • 58. Uğurlu, S., Polat, N. ve Kandemir, Ş. (2008) Kızılırmak ve Yeşilırmak Deltalarındaki (Samsun) Lagün Göllerinin Balık Faunası. Journal of FisheriesSciences.com, 2(3), 475–483. doi:10.3153/jfscom.mug.200742
  • 59. Vallarino Castillo, R., Negro Valdecantos, V. ve Moreno Blasco, L. (2022) Shoreline change analysis using historical multispectral Landsat images of the Pacific Coast of Panama. Journal of Marine Science and Engineering, 10(12), 1801. doi:10.3390/jmse10121801
  • 60. Van Rijn, L.C. (2011) Coastal erosion and control. Ocean & Coastal Management, 54(12), 867–887. doi:10.1016/j.ocecoaman.2011.05.004
  • 61. Wang, H., Xu, D., Zhang, D., Pu, Y. ve Luan, Z. (2022) Shoreline dynamics of chongming ısland and driving factor analysis based on Landsat images. Remote Sensing, 14(14), 3305. doi:10.3390/rs14143305
  • 62. Xu, H. (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. doi:10.1080/01431160600589179
  • 63. Yadav, A., Dodamani, B.M. ve Dwarakish, G.S. (2021) Shoreline analysis using Landsat-8 satellite image. ISH Journal of Hydraulic Engineering, 27(3), 347–355. doi:10.1080/09715010.2018.1556569
  • 64. Yang, X., Zhao, S., Qin, X., Zhao, N. ve Liang, L. (2017) Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sensing, 9(6), 596. doi:10.3390/rs9060596
  • 65. Yılmaz, C. (2005) Kızılırmak Deltasında meydana gelen erozyonun coğrafi analizi. Türkiye Kuvaterner Sempozyumu, 2–5 Haziran 2005, İstanbul.
  • 66. Zanutta, A., Lambertini, A. ve Vittuari, L. (2020) UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes. Journal of Marine Science and Engineering, 8(1), 52. doi:10.3390/jmse8010052
  • 67. Zeybek, H.İ, Bağcı, H.R. ve Bahadır, M. (2018) Yeşilırmak Deltasında (Samsun) kıyı çizgisi değişimlerinin Bruun kuralına göre değerlendirilmesi. TURQUA 2018 Türkiye Kuvaterner Sempozyumu, 2–5 Mayıs 2018, İstanbul.
  • 68. Zhang, A., Yang, Y., Chen, T., Liu, J. ve Hu, Y. (2021) Exploration of spatial differentiation patterns and related influencing factors for National Key Villages for rural tourism in China in the context of a rural revitalization strategy, using GIS-based overlay analysis. Arabian Journal of Geosciences, 14, 1–15. doi:10.1007/s12517-020-06381-9
  • 69. Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., Zou, Z. ve Qin, Y. (2017) Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water, 9(4), 256. doi:10.3390/w9040256

YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ

Year 2023, Volume: 28 Issue: 3, 847 - 866, 27.12.2023
https://doi.org/10.17482/uumfd.1248184

Abstract

Bu çalışmada ulusal öneme haiz sulak alanlar kapsamında tescillenen Yeşilırmak Deltası’nın yaklaşık 18,5 km’lik kıyı bölümünde gerçekleşen erozyon uzaktan algılama ve Coğrafi Bilgi Sistemleri (CBS) yardımıyla araştırılmıştır. 1985–2022 periyodunda gerçekleşen kıyı çizgisi değişimlerinin belirlenmesi ve erozyonun derecesinin anlaşılabilmesi için 1985, 1990, 1996, 2001, 2006, 2011, 2017 ve 2022 yıllarına ait Landsat-5 TM/Landsat-8 OLI uydu görüntüleri kullanılmıştır. Uydu görüntülerinden kıyı çizgilerinin belirlenmesinde normalize fark su indeksi (NDWI) ve modifiye normalize fark su indeksi (MNDWI) entegre edilmiştir. Yıllık kıyı çizgisi değişim oranları 1985–2022 periyodunda sekiz farklı yıla ait kıyı çizgilerinden doğrusal regresyon oranı (LRR) yöntemiyle %95 güven düzeyinde hesaplanmış, Yeşilırmak Nehri’nin batı kesimindeki Bölge-1’de maksimum -25,8 m/yıl, doğu kesimindeki Bölge-2’de maksimum - 7,7 m/yıl’a ulaşan erozyon oranı belirlenmiştir. Kıyı çizgisi değişimleri sınıflandırıldığında deltanın %34’ü yüksek, %9’u orta, %18’i düşük derecede olmak üzere %61’inde erozyon gerçekleştiği anlaşılmıştır. 1985– 2022 periyodunda erozyonla kaybedilen alanlar çakıştırma analizi ile belirlenmiş, Bölge-1’de 179,23 ha ve Bölge-2’de 82,22 ha olmak üzere toplam 261,45 ha alanın erozyon ile kaybedildiği görülmüştür. Analiz sonuçları, Yeşilırmak Deltası kıyılarındaki erozyon, birikim ve stabil alanların belirlenerek kıyı dinamiklerinin ve erozyon tehlikesinin daha iyi anlaşılmasına katkı sağlamış ve kıyı çizgisi değişimlerinin belirlenmesinde Landsat görüntüleri ve LRR yönteminin etkinliğini ortaya çıkarmıştır

References

  • 1. Aladwani, N.S. (2022) Shoreline change rate dynamics analysis and prediction of future positions using satellite imagery for the southern coast of Kuwait: A case study. Oceanologia, 64(3), 417–432. doi:10.1016/j.oceano.2022.02.002
  • 2. Atalay Dutucu, A. (2016) Yeşilırmak Deltası’nda jeomorfolojik değişiklikler ve gelecek ile ilgili öngörüler. Doktora Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • 3. Atalay Dutucu A., Turoğlu, H. ve İkiel, C. (2017) Yeşilırmak Deltası kıyı çizgisi değişimine barajların etkisi. 70. Türkiye Jeoloji Kurultayı, 10–14 Nisan 2017, Ankara.
  • 4. Avcı, K.M., Erkal, T. ve San, B. T. (2003) Yeşilırmak Deltası kıyı çizgisi değişiminin uzaktan algılama ve coğrafi bilgi sistemleri yöntemi ile incelenmesi. Maden Tetkik ve Arama (MTA), Rapor, (10612).
  • 5. Bağcı, H.R. ve Şahin, K. (2018) Yeşilırmak Deltasındaki (Samsun) turistik çekiciliklerin ulaşılabilirlik durumları. International Geography Symposium on the 30th Anniversary of TUCAUM, 3–6 October 2018, Ankara.
  • 6. Baig, M.R.I., Ahmad, I.A., Shahfahad, Tayyab, M. ve Rahman, A. (2020) Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26(4), 361–376. doi:10.1080/19475683.2020.1815839
  • 7. Baral, R., Pradhan, S., Samal, R.N. ve Mishra, S.K. (2018) Shoreline change analysis at Chilika lagoon coast, India using digital shoreline analysis system. Journal of the Indian Society of Remote Sensing, 46(10), 1637–1644. doi:10.1007/s12524-018-0818-7
  • 8. Basheer Ahammed, K.K. ve Pandey, A.C. (2022) Assessment and prediction of shoreline change using multi-temporal satellite data and geostatistics: A case study on the eastern coast of India. Journal of Water and Climate Change, 13(3), 1477–1493. doi:10.2166/wcc.2022.270
  • 9. Bergillos, R.J., Rodríguez‐Delgado, C., Millares, A., Ortega‐Sánchez, M. ve Losada, M.A. (2016) Impact of river regulation on a Mediterranean Delta: Assessment of managed versus unmanaged scenarios. Water Resources Research, 52(7), 5132–5148. doi:10.1002/2015WR018395
  • 10. Bombino, G., Barbaro, G., D'Agostino, D., Denisi, P., Foti, G., Labate, A. ve Zimbone, S.M. (2022) Shoreline change and coastal erosion: The role of check dams. First indications from a case study in Calabria, southern Italy. Catena, 217, 106494. doi:10.1016/j.catena.2022.106494
  • 11. Burningham, H. ve Fernandez-Nunez, M. (2020) Shoreline change analysis. İçinde: Sandy Beach Morphodynamics (s. 439–460). Elsevier.
  • 12. Cambers G. (2001) Coastal hazards and vulnerability. İçinde: Professional Development Programme: Coastal Infrastructure Design, Construction and Maintenance - A Course in Coastal Zone/Island Systems Management, Bölüm 4, 21 s.
  • 13. Can, Ö. ve Taş, B. (2012) Ramsar alanı içinde yer alan Cernek Gölü ve sulak alanının (Kızılırmak Deltası, Samsun) ekolojik ve sosyo-ekonomik önemi. TÜBAV Bilim Dergisi, 5(2), 1–11.
  • 14. Chandrasekar, K., Sesha Sai, M.V.R., Roy, P.S. ve Dwevedi, R.S. (2010) Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. International Journal of Remote Sensing, 31(15), 3987–4005. doi:10.1080/01431160802575653
  • 15. Chang, L., Cheng, L., Huang, C., Qin, S., Fu, C. ve Li, S. (2022) Extracting urban water bodies from Landsat imagery based on mNDWI and HSV transformation. Remote Sensing, 14(22), 5785. doi:10.3390/rs14225785
  • 16. Chenthamil Selvan, S., Kankara, R.S., Markose, V.J., Rajan, B. ve Prabhu, K. (2016) Shoreline change and impacts of coastal protection structures on Puducherry, SE coast of India. Natural Hazards, 83(1), 293– 308. doi:10.1007/s11069-016-2332-y
  • 17. Choung, Y.J. ve Jo, M.H. (2017) Comparison between a machine-learning-based method and a water-index-based method for shoreline mapping using a high-resolution satellite image acquired in Hwado Island, South Korea. Journal of Sensors, 8245204, doi:10.1155/2017/8245204
  • 18. Chu, D.T., Himori, G., Saito, Y., Bui, T.V. ve Aoki, S.I. (2015) Study of beach erosion and evolution of beach profile due to nearshore bar sand dredging. Procedia Engineering, 116, 285–292. doi:10.1016/j.proeng.2015.08.292
  • 19. Das, S.K., Sajan, B., Ojha, C. ve Soren, S. (2021) Shoreline change behavior study of Jambudwip island of Indian Sundarban using DSAS model. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 961–970. doi:10.1016/j.ejrs.2021.09.004
  • 20. Daud, S., Milow, P. ve Zakaria, R.M. (2021) Analysis of shoreline change trends and adaptation of Selangor coastline, using Landsat satellite data. Journal of the Indian Society of Remote Sensing, 49, 1869–1878. doi:10.1007/s12524-020-01218-0
  • 21. Deepika, B., Avinash, K. ve Jayappa, K. (2014) Shoreline change rate estimation and its forecast: remote sensing, geographical information system and statistics-based approach. International Journal of Environmental Science and Technology, 11, 395–416. doi:10.1007/s13762-013-0196-1
  • 22. Dolan, R., Fenster, M.S. ve Holme, S.J. (1991) Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7(3), 723–744.
  • 23. Dutta, D., Kumar, T., Jayaram, C. ve Akram, W. (2022) Shoreline change analysis of hooghly estuary using multi-temporal Landsat data and Digital Shoreline Analysis System. İçinde: Zhang, Y. ve Cheng, Q. (editörler) Geographic Information Systems and Applications in Coastal Studies. IntechOpen. doi:10.5772/intechopen.103030
  • 24. Elfadaly, A., Abutaleb, K., Naguib, D.M. ve Lasaponara, R. (2022) Detecting the environmental risk on the archaeological sites using satellite imagery in Basilicata Region, Italy. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 181–193. doi:10.1016/j.ejrs.2022.01.007
  • 25. Feyisa, G.L., Meilby, H., Fensholt, R. ve Proud, S.R. (2014) Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. doi:10.1016/j.rse.2013.08.029
  • 26. Ford, M. (2011) Shoreline changes on an urban atoll in the Central Pacific Ocean: Majuro Atoll, Marshall Islands. Journal of Coastal Research, 28, 11–22.
  • 27. Gonçalves, R.M., Saleem, A., Queiroz, H.A. ve Awange, J.L. (2019) A fuzzy model integrating shoreline changes, NDVI and settlement influences for coastal zone human impact classification. Applied Geography, 113, 102093. doi:10.1016/j.apgeog.2019.102093
  • 28. https://earthexplorer.usgs.gov/, Erişim Tarihi: 12.12.2022, Konu: Earth Explorer.
  • 29. https://www.statology.org/standard-error-of-regression-slope/, Erişim Tarihi: 26.08.2023, Konu: Standard Error of A Regression Slope.
  • 30. https://www.usgs.gov/landsat-missions/landsat-satellite-missions, Erişim Tarihi: 12.12.2022, Konu: Landsat Satellite Missions.
  • 31. https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products, Erişim Tarihi: 01.01.2023, Konu: Landsat Collection 2 Level-2 Science Products.
  • 32. Islam, M.S. ve Crawford, T.W. (2022) Assessment of spatio-temporal empirical forecasting performance of future shoreline positions. Remote Sensing, 14(24), 6364. doi:10.3390/rs14246364
  • 33. Jackson Jr, C.W., Alexander, C.R. ve Bush, D.M. (2012) Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. Computers & Geosciences, 41, 199–207. doi:10.1016/j.cageo.2011.08.009
  • 34. Karimi, M., Samani, J.M.V. ve Mazaheri, M. (2021) Shoreline spatial and temporal response to natural and human effects in Boujagh National Park, Iran. International Journal of Sediment Research, 36(5), 582– 592. doi:10.1016/j.ijsrc.2021.02.004
  • 35. Khallaghi, S. ve Pontius Jr, R. G. (2022) Area method compared with Transect method to measure shoreline movement. Geocarto International, 37(20), 5963–5984. doi:10.1080/10106049.2021.1926556
  • 36. Köle, M.M. ve Ataol, M. (2016) Yeşilırmak Deltası’nda 2000-2016 yılları arasında gözlenen kıyı erozyonu. Efe, R., Cürebal, İ., Levai, L. (editörler) 4th International Geography Symposium - GEOMED 2016 Book of Proceedings.
  • 37. Kudale, M.D. (2010) Impact of port development on the coastline and the need for protection. Indian Journal of Geo-Marine Science, 39(4), 597–604.
  • 38. Kuleli, T. (2010) Kızılırmak ve Yeşilırmak Deltalarındaki kıyı değişimlerinin Landsat TM ve DSAS ile Belirlenmesi. Türkiye’nin Kıyı ve Deniz Alanları VIII. Ulusal Kongresi Bildiriler Kitabı.
  • 39. Li, R., Liu, J.K. ve Felus, Y. (2001) Spatial modeling and analysis for shoreline change detection and coastal erosion monitoring. Marine Geodesy, 24(1), 1–12. doi:10.1080/01490410121502
  • 40. Liu, Q., Trinder, J.C. ve Turner, I.L. (2017) Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen-Collaroy Beach, Australia. Journal of Applied Remote Sensing, 11(1), 016036. doi:10.1117/1.JRS.11.016036
  • 41. Liu, Q. ve Trinder, J.C. (2018) Sub-pixel technique for time series analysis of shoreline changes based on multispectral satellite imagery. İçinde: Marghany, M (editör) Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure. IntechOpen.
  • 42. Martínez, C., Grez, P.W., Martín, R.A., Acuña, C.E., Torres, I. ve Contreras-López, M. (2022) Coastal erosion in sandy beaches along a tectonically active coast: The Chile study case. Progress in Physical Geography: Earth and Environment, 46(2), 250–271. doi:10.1177/0309133321105719
  • 43. McFeeters, S.K. (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. doi:10.1080/01431169608948714
  • 44. McFeeters, S.K. (2013) Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sensing, 5(7), 3544–3561. doi:10.3390/rs5073544
  • 45. Murray, J., Adam, E., Woodborne, S., Miller, D., Xulu, S. ve Evans, M. (2023) Monitoring shoreline changes along the Southwestern Coast of South Africa from 1937 to 2020 using varied remote sensing data and approaches. Remote Sensing, 15(2), 317. doi:10.3390/rs15020317
  • 46. O'Brien, K., Stocker, J., Barrett, J. ve Hyde, B. (2014) Analysis of shoreline change in Connecticut: 100+ years of erosion and accretion: methodology and summary results. A cooperative effort between the Connecticut Department of Energy & Environmental Protection (DEEP), the Connecticut Sea Grant (CT Sea Grant) and the University of Connecticut Center for Land Use Education and Research (UCONN-CLEAR).
  • 47. Oyedotun, T.D. (2014) Shoreline geometry: DSAS as a tool for historical trend analysis. İçinde: Geomorphological Techniques, Bölüm 3(2.2), s.1–12.
  • 48. Ozturk, D., Beyazit, I. ve Kilic, F. (2015) Spatiotemporal analysis of shoreline changes of the Kizilirmak Delta. Journal of Coastal Research, 31(6), 1389–1402. doi:10.2112/JCOASTRES-D-14-00159.1
  • 49. Ozturk, D. ve Sesli, F.A. (2015) Shoreline change analysis of the Kizilirmak Lagoon Series. Ocean & Coastal Management, 118, 290–308. doi:10.15244/pjoes/58765
  • 50. Reddy, G.O. (2018) Spatial data management, analysis, and modeling in GIS: principles and applications. İçinde: Reddy, G., Singh, S. (editörler) Geospatial Technologies in Land Resources Mapping, Monitoring and Management, cilt 21, s.127–142. Geotechnologies and the Environment, Springer, Cham. doi:10.1007/978-3-319-78711-4_7
  • 51. Salghuna, N.N. ve Bharathvaj, S.A. (2015) Shoreline change analysis for northern part of the Coromandel coast. Aquatic Procedia, 4, 317–324. doi:10.1016/j.aqpro.2015.02.043
  • 52. Singh, K.V., Setia, R., Sahoo, S., Prasad, A. ve Pateriya, B. (2015) Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30(6), 650–661. doi:10.1080/10106049.2014.965757
  • 53. Singh, S., Bhat, J.A., Shah, S. ve Pala, N.A. (2021) Coastal resource management and tourism development in Fiji Islands: A conservation challenge. Environment, Development and Sustainability, 23(3), 3009–3027. doi:10.1007/s10668-020-00764-4
  • 54. Sowmya, K., Sri, M.D., Bhaskar, A.S. ve Jayappa, K.S. (2019) Long-term coastal erosion assessment along the coast of Karnataka, west coast of India. International Journal of Sediment Research, 34(4), 335–344. doi:10.1016/j.ijsrc.2018.12.007
  • 55. Süzen, M.L. ve Özhan, E. (2003) Monitoring shoreline changes at Yesilirmak Delta by remote sensing and GIS. Proceedings of the Sixth International Conference on the Mediterranean Coastal Environment, MEDCOAST 03, 7–11 October 2003, Ravenna, Italy.
  • 56. Tarım ve Orman Bakanlığı (2022) Ulusal Öneme Haiz Sulak Alanlar. https://www.tarimorman.gov.tr/DKMP/Belgeler/Korunan%20Alanlar%20Listesi/3-%20sulak%20alanlar.pdf (Erişim Tarihi: 26.08.2023)
  • 57. Tsoukala, V.K., Katsardi, V., Ηadjibiros, K. ve Moutzouris, C.I. (2015) Beach erosion and consequential impacts due to the presence of harbours in sandy beaches in Greece and Cyprus. Environmental Processes, 2(1), 55–71. doi:10.1007/s40710-015-0096-0
  • 58. Uğurlu, S., Polat, N. ve Kandemir, Ş. (2008) Kızılırmak ve Yeşilırmak Deltalarındaki (Samsun) Lagün Göllerinin Balık Faunası. Journal of FisheriesSciences.com, 2(3), 475–483. doi:10.3153/jfscom.mug.200742
  • 59. Vallarino Castillo, R., Negro Valdecantos, V. ve Moreno Blasco, L. (2022) Shoreline change analysis using historical multispectral Landsat images of the Pacific Coast of Panama. Journal of Marine Science and Engineering, 10(12), 1801. doi:10.3390/jmse10121801
  • 60. Van Rijn, L.C. (2011) Coastal erosion and control. Ocean & Coastal Management, 54(12), 867–887. doi:10.1016/j.ocecoaman.2011.05.004
  • 61. Wang, H., Xu, D., Zhang, D., Pu, Y. ve Luan, Z. (2022) Shoreline dynamics of chongming ısland and driving factor analysis based on Landsat images. Remote Sensing, 14(14), 3305. doi:10.3390/rs14143305
  • 62. Xu, H. (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. doi:10.1080/01431160600589179
  • 63. Yadav, A., Dodamani, B.M. ve Dwarakish, G.S. (2021) Shoreline analysis using Landsat-8 satellite image. ISH Journal of Hydraulic Engineering, 27(3), 347–355. doi:10.1080/09715010.2018.1556569
  • 64. Yang, X., Zhao, S., Qin, X., Zhao, N. ve Liang, L. (2017) Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sensing, 9(6), 596. doi:10.3390/rs9060596
  • 65. Yılmaz, C. (2005) Kızılırmak Deltasında meydana gelen erozyonun coğrafi analizi. Türkiye Kuvaterner Sempozyumu, 2–5 Haziran 2005, İstanbul.
  • 66. Zanutta, A., Lambertini, A. ve Vittuari, L. (2020) UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes. Journal of Marine Science and Engineering, 8(1), 52. doi:10.3390/jmse8010052
  • 67. Zeybek, H.İ, Bağcı, H.R. ve Bahadır, M. (2018) Yeşilırmak Deltasında (Samsun) kıyı çizgisi değişimlerinin Bruun kuralına göre değerlendirilmesi. TURQUA 2018 Türkiye Kuvaterner Sempozyumu, 2–5 Mayıs 2018, İstanbul.
  • 68. Zhang, A., Yang, Y., Chen, T., Liu, J. ve Hu, Y. (2021) Exploration of spatial differentiation patterns and related influencing factors for National Key Villages for rural tourism in China in the context of a rural revitalization strategy, using GIS-based overlay analysis. Arabian Journal of Geosciences, 14, 1–15. doi:10.1007/s12517-020-06381-9
  • 69. Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., Zou, Z. ve Qin, Y. (2017) Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water, 9(4), 256. doi:10.3390/w9040256
There are 69 citations in total.

Details

Primary Language Turkish
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Derya Öztürk 0000-0002-0684-3127

Sibel Uzun 0000-0001-5814-7054

Early Pub Date December 2, 2023
Publication Date December 27, 2023
Submission Date February 8, 2023
Acceptance Date September 27, 2023
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Öztürk, D., & Uzun, S. (2023). YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 847-866. https://doi.org/10.17482/uumfd.1248184
AMA Öztürk D, Uzun S. YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ. UUJFE. December 2023;28(3):847-866. doi:10.17482/uumfd.1248184
Chicago Öztürk, Derya, and Sibel Uzun. “YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 3 (December 2023): 847-66. https://doi.org/10.17482/uumfd.1248184.
EndNote Öztürk D, Uzun S (December 1, 2023) YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 847–866.
IEEE D. Öztürk and S. Uzun, “YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ”, UUJFE, vol. 28, no. 3, pp. 847–866, 2023, doi: 10.17482/uumfd.1248184.
ISNAD Öztürk, Derya - Uzun, Sibel. “YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (December 2023), 847-866. https://doi.org/10.17482/uumfd.1248184.
JAMA Öztürk D, Uzun S. YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ. UUJFE. 2023;28:847–866.
MLA Öztürk, Derya and Sibel Uzun. “YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 3, 2023, pp. 847-66, doi:10.17482/uumfd.1248184.
Vancouver Öztürk D, Uzun S. YEŞİLIRMAK DELTASI’NDA KIYI EROZYONUNUN DOĞRUSAL REGRESYON ORANI YÖNTEMİYLE ANALİZİ. UUJFE. 2023;28(3):847-66.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.