Research Article
BibTex RIS Cite

Co-60 Gama Işınlamasının Fluxgate Sensör Nüveleri Üzerine Etkisi

Year 2023, Volume: 28 Issue: 3, 843 - 847, 29.12.2023
https://doi.org/10.53433/yyufbed.1252501

Abstract

Zayıf manyetik alan ölçümleri için kullanılan fluxgate sensörler uzay ortamındaki çevresel faktörlerden oldukça fazla etkileniyor olsa da uzay görevlerinde kanıtlanmış performansları ve güvenilirlikleri dolayısıyla oldukça yaygın tercih edilirler. Çevresel faktörler uzay araçlarının görevini kısmen ya da tamamen engelleyebilecek büyük sorunlara neden olacağından, bu çalışmada çevresel faktörlerden biri olan radyasyonun sadece sensör nüvesi üzerinde etkileri incelenmiştir. Üç farklı dozda Gama radyasyona maruz bırakılan nüvelerin karakterizasyon ölçümleri yapılmıştır. Hassasiyet ölçümlerinden elde edilen ölçek faktörlerinin çok az farkla birbirlerine yakın olduğu görülmüştür. Ayrıca yapılan gürültü analizlerinden artan radyasyon miktarıyla gürültü seviyesinin ise nT mertebesinde arttığı gözlenmiştir.

Thanks

Bu çalışmayı yaparken katkı ve desteklerini esirgemeyen saygıdeğer hocam Doç. Dr. Uğur TOPAL’a teşekkürü bir borç bilirim.

References

  • Benton, E. R., & Benton, E. V. (2001). Space radiation dosimetry in low-Earth orbit and beyond. Nuclear Instruments and Methods in Physics Research Section B, 184, 255-294. doi:10.1016/S0168-583X(01)00748-0
  • Clem, T. R. (1997). Progress in magnetic sensor technology for sea mine detection. The International Society for Optical Engineering, 3079, 354-371. doi:10.1117/12.280862
  • Dachev, T. P., Tomov, B. T., Matviichuk, Y. N., Dimitrov, P. S., Vadawale, S. V., Goswami, J. N., Angelis, G. D., & Girish, V. (2011). An overview of RADOM results for earth and moon radiation environment on Chandrayaan-1 satellite. Advances in Space Research, 48(5), 779-791. doi:10.1016/j.asr.2011.05.009
  • Gordon, D., & Brown, R. (1972). Recent advances in fluxgate magnetometry. IEEE Transactions on Magnetics, 8(1), 76-82. doi:10.1109/TMAG.1972.1067268
  • Gomez Rojas, L., Chang, M., Hopkinson, G., & Duvet, L. (2011). Radiation effects in the LUPA4000 CMOS image sensor for space applications. Proceedings of the European Conference on Radiation and its Effects on Components and Systems, 6131324, 800-805. doi:10.1109/RADECS.2011.6131324
  • Gusev, A. A., Pugacheva, G. I., Jayanthi, U. B., & Schuch, N. (2003). Modeling of low-altitude quasi-trapped proton fluxes at the equatorial inner magnetosphere. Brazilian Journal of Physics, 33(4), 775-781. doi:10.1590/S0103-97332003000400029
  • Herčík, D., Auster, H.-U., Blum, J., Fornaçon, K.-H., Fujimoto, M., Gebauer, K., … & Glassmeier, K. H. (2017). The MASCOT magnetometer. Space Science Review, 208, 433-449. doi:10.1007/s11214-016-0236-5
  • Hu, W., Zhuang, Y.-Q., Bao, J.-L., & Zhao, Q.-F. (2016). Space environment effects and 1/f noise discrimination method on Mn-Co-Ni type infrared detectors. Acta Photonica Sinica, 45(7), 70704001.
  • Kubik, J., Pavel, L., Ripka, P., & Kaspar, P. (2005). Low-power PCB fluxgate sensor. IEEE Sensors, 1(2), 432-435 doi:10.1109/ICSENS.2005.1597728
  • Peterson, J. C., Arredondo, R., Chao, T.-H., Friedman, G. L., LaBaw, C., Lam, B., Moynihan, P. I., & Tupman, J. (1995). Sensor technology assessment for ordinance and explosive waste detection and location. California, USA: JPL.
  • Primdahl, F. (1973). Comments on the theoretical output of a ring core fluxgate sensor. IEEE Transactions on Magnetics, 9(4), 708. doi:10.1109/TMAG.1973.1067725
  • Reeves, G. D., McAdams, K. L., Friedel, R. H. W., & O’Brien, T. P. (2003). Acceleration and loss of relativistic electrons during geomagnetic storms. Geophysical Research Letters, 30(10), 1529. doi:10.1029/2002GL016513
  • Ripka, P. (1992). Review of fluxgate sensors. Sensors Actuators A: Physical, 33(3), 129-141. doi:10.1016/0924-4247(92)80159-Z
  • Ripka, P. (2002). Magnetic sensors and magnetometers. Measurement Science and Technology, 13(4), 645. doi:10.1088/0957-0233/13/4/707
  • Ripka, P., & Janosek, M. (2010). Advances in magnetic field sensors. IEEE Sensors Journal, 10(6), 1108-1116. doi:10.1109/JSEN.2010.2043429
  • Snare, R. C. (1998). A history of vector magnetometry in space. Geophysical Monograph Series, 103, 101-114.
  • Tiwari, M. K., Diwan, J. S., Singh, K., & Topkar, A. (2022). Comparison of gamma radiation effects on CCD cameras under different bias conditions using image analysis techniques. IEEE Transactions on Nuclear Science, 69(12), 2297-2304. doi:10.1109/TNS.2022.3222714
  • Tumanski, S. (2013). Modern magnetic field sensors-a review. Przeglad Elektrotechniczny, 89(10), 1-12.
  • Wallis, D. D., Miles, D. M., Narod, B. B., Bennest J. R., Murphy K. R., Mann I. R., & Yau A.W. (2015). The CASSIOPE/e-POP magnetic field instrument (MGF). Space Science Reviews, 189, 27-39. doi:10.1007/s11214-014-0105-z
  • Weaver, D., & Villard, R. (1996). Hubble achieves milestone: 100,000th Exposure. Space Telescope Science Institute. https://hubblesite.org/contents/news-releases/1996/news-1996-25.html Erişim tarihi: 27.11.2023.

Effect of Co-60 Gamma Irradiation on the Fluxgate Sensor’s Cores

Year 2023, Volume: 28 Issue: 3, 843 - 847, 29.12.2023
https://doi.org/10.53433/yyufbed.1252501

Abstract

Although fluxgate sensors used for weak magnetic field measurements are highly affected by environmental factors in the space environment, they are widely preferred in space missions due to their proven performance and reliability. Environmental factors can cause major problems that may partially or completely hinder the mission of spacecraft. In this study, the effects of radiation, which is one of the environmental factors, only on the sensor core were investigated. Characterization measurements of the cores exposed to three different doses of Gamma radiation were made. It was observed that the scale factors obtained from the sensitivity measurements were close to each other with very little difference. In addition, it was observed from the noise analyzes that the noise level increased in the order of nT with increasing doses of radiation.

References

  • Benton, E. R., & Benton, E. V. (2001). Space radiation dosimetry in low-Earth orbit and beyond. Nuclear Instruments and Methods in Physics Research Section B, 184, 255-294. doi:10.1016/S0168-583X(01)00748-0
  • Clem, T. R. (1997). Progress in magnetic sensor technology for sea mine detection. The International Society for Optical Engineering, 3079, 354-371. doi:10.1117/12.280862
  • Dachev, T. P., Tomov, B. T., Matviichuk, Y. N., Dimitrov, P. S., Vadawale, S. V., Goswami, J. N., Angelis, G. D., & Girish, V. (2011). An overview of RADOM results for earth and moon radiation environment on Chandrayaan-1 satellite. Advances in Space Research, 48(5), 779-791. doi:10.1016/j.asr.2011.05.009
  • Gordon, D., & Brown, R. (1972). Recent advances in fluxgate magnetometry. IEEE Transactions on Magnetics, 8(1), 76-82. doi:10.1109/TMAG.1972.1067268
  • Gomez Rojas, L., Chang, M., Hopkinson, G., & Duvet, L. (2011). Radiation effects in the LUPA4000 CMOS image sensor for space applications. Proceedings of the European Conference on Radiation and its Effects on Components and Systems, 6131324, 800-805. doi:10.1109/RADECS.2011.6131324
  • Gusev, A. A., Pugacheva, G. I., Jayanthi, U. B., & Schuch, N. (2003). Modeling of low-altitude quasi-trapped proton fluxes at the equatorial inner magnetosphere. Brazilian Journal of Physics, 33(4), 775-781. doi:10.1590/S0103-97332003000400029
  • Herčík, D., Auster, H.-U., Blum, J., Fornaçon, K.-H., Fujimoto, M., Gebauer, K., … & Glassmeier, K. H. (2017). The MASCOT magnetometer. Space Science Review, 208, 433-449. doi:10.1007/s11214-016-0236-5
  • Hu, W., Zhuang, Y.-Q., Bao, J.-L., & Zhao, Q.-F. (2016). Space environment effects and 1/f noise discrimination method on Mn-Co-Ni type infrared detectors. Acta Photonica Sinica, 45(7), 70704001.
  • Kubik, J., Pavel, L., Ripka, P., & Kaspar, P. (2005). Low-power PCB fluxgate sensor. IEEE Sensors, 1(2), 432-435 doi:10.1109/ICSENS.2005.1597728
  • Peterson, J. C., Arredondo, R., Chao, T.-H., Friedman, G. L., LaBaw, C., Lam, B., Moynihan, P. I., & Tupman, J. (1995). Sensor technology assessment for ordinance and explosive waste detection and location. California, USA: JPL.
  • Primdahl, F. (1973). Comments on the theoretical output of a ring core fluxgate sensor. IEEE Transactions on Magnetics, 9(4), 708. doi:10.1109/TMAG.1973.1067725
  • Reeves, G. D., McAdams, K. L., Friedel, R. H. W., & O’Brien, T. P. (2003). Acceleration and loss of relativistic electrons during geomagnetic storms. Geophysical Research Letters, 30(10), 1529. doi:10.1029/2002GL016513
  • Ripka, P. (1992). Review of fluxgate sensors. Sensors Actuators A: Physical, 33(3), 129-141. doi:10.1016/0924-4247(92)80159-Z
  • Ripka, P. (2002). Magnetic sensors and magnetometers. Measurement Science and Technology, 13(4), 645. doi:10.1088/0957-0233/13/4/707
  • Ripka, P., & Janosek, M. (2010). Advances in magnetic field sensors. IEEE Sensors Journal, 10(6), 1108-1116. doi:10.1109/JSEN.2010.2043429
  • Snare, R. C. (1998). A history of vector magnetometry in space. Geophysical Monograph Series, 103, 101-114.
  • Tiwari, M. K., Diwan, J. S., Singh, K., & Topkar, A. (2022). Comparison of gamma radiation effects on CCD cameras under different bias conditions using image analysis techniques. IEEE Transactions on Nuclear Science, 69(12), 2297-2304. doi:10.1109/TNS.2022.3222714
  • Tumanski, S. (2013). Modern magnetic field sensors-a review. Przeglad Elektrotechniczny, 89(10), 1-12.
  • Wallis, D. D., Miles, D. M., Narod, B. B., Bennest J. R., Murphy K. R., Mann I. R., & Yau A.W. (2015). The CASSIOPE/e-POP magnetic field instrument (MGF). Space Science Reviews, 189, 27-39. doi:10.1007/s11214-014-0105-z
  • Weaver, D., & Villard, R. (1996). Hubble achieves milestone: 100,000th Exposure. Space Telescope Science Institute. https://hubblesite.org/contents/news-releases/1996/news-1996-25.html Erişim tarihi: 27.11.2023.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Hava Can 0000-0001-7388-6007

Publication Date December 29, 2023
Submission Date February 17, 2023
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Can, H. (2023). Co-60 Gama Işınlamasının Fluxgate Sensör Nüveleri Üzerine Etkisi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 843-847. https://doi.org/10.53433/yyufbed.1252501