Review
BibTex RIS Cite

Herbicide-Biological Nitrogen Fixation Interaction In Legumes

Year 2019, Issue: 368, 53 - 63, 31.12.2019
https://doi.org/10.33724/zm.635998

Abstract

Legumes are species that are capable of fixing nitrogen biologically from the atmosphere. Biological nitrogen fixation is a system that is sensitive to multiple stresses and mitigating the effect of these stress factors will increase the contribution of this system to the agroecosystem. The impact of pesticides on the environment includes the impact on soil microorganisms. The effect of herbicides on nitrogen fixing bacteria, especially on symbiosis with legumes, has significant effects on agricultural productivity. In this review, which analysis the studies conducted on this subject in the world, the reaction of nodulation and nitrogen fixing capacity of different legumes to different herbicide applications were evaluated and the importance of herbicide application time, soil conditions and bacterial race were evaluated.

References

  • Ahemad, M., & Khan, M. S. (2010). Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Annals of microbiology, 60(4), 735-745.
  • Aliverdi, A., & Ahmadvand, G. (2018). Herbicide Toxicity to Soybean–Rhizobium Symbiosis as Affected by Soil pH. Bulletin of environmental contamination and toxicology, 101(4), 434-438.
  • Clark, S. A. (1987). Herbicide Effects On White Clover Growth and Nodulation. Masters of Science Thesis in Microbiology, University of Canterbury.
  • Divito, G. A., & Sadras, V. O. (2014). How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Research, 156, 161-171.
  • Drevon, J. J., Alkama, N., Araujo, A., Beebe, S., Blair, M. W., Hamza, H., & Tajini, F. (2011). Nodular diagnosis for ecological engineering of the symbiotic nitrogen fixation with legumes. Procedia Environmental Sciences, 9, 40-46.
  • Dwivedi, S. L., Sahrawat, K. L., Upadhyaya, H. D., Mengoni, A., Galardini, M., Bazzicalupo, M., & Ortiz, R. (2015). Advances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. In Advances in Agronomy (Vol. 129, pp. 1-116). Academic Press.
  • Eberbach, P. L., & Douglas, L. A. (1989). Herbicide effects on the growth and nodulation potential ofRhizobium trifolii withTrifolium subterraneum L. Plant and Soil, 119(1), 15-23.
  • Eberbach, P. L., & Douglas, L. A. (1991). Effect of herbicide residues in a sandy loam on the growth, nodulation and nitrogenase activity (C 2 H 2/C 2 H 4) of Trifolium subterraneum. Plant and soil, 131(1), 67-76.
  • Izadi, D. E., & Soleimani, P. Z. (2016). Study the effect of different concentrations of metribuzin herbicide in soil on chickpea (Cicer arietinum L.), growth and nodulation.
  • Jeong-Hae, O. (1989). Effects of herbicide application on growth and the nodulation in soybean. Korean Journal of Crop Science, 34(3), 303-309.
  • Koval'zhiu, A. I., Apostolov, S. D., & Sabel'nikova, V. I. (1990). Effectiveness of the symbiosis of lucerne and nodule bacteria with applications of herbicides. Izvestiya Akademii Nauk Moldavskoĭ SSR. Biologicheskie i Khimicheskie Nauki, 248(5), 13-18.
  • Kriete, G., & Broer, I. (1996). Influence of the herbicide phosphinothricin on growth and nodulation capacity of Rhizobium meliloti. Applied microbiology and biotechnology, 46(5-6), 580-586.
  • Kurrey, D., Lakpale, R., & Rajput, R. S. (2016). Growth behavior, nodulation and Rhizobium population, as affected by combined application of herbicide and insecticide in soybean (Glycine max L.). J Pure Appl Microbio, 10(4), 2931-2936.
  • Liu, Y., Wu, L., Baddeley, J. A., & Watson, C. A. (2011). Models of biological nitrogen fixation of legumes. In Sustainable Agriculture Volume 2 (pp. 883-905). Springer, Dordrecht.
  • Maheswari, N. U., Barjana, B. F., & Senthilkumar, R. (2016). Development of Herbicide Tolerant Rhizobium Species From Different Leguminous Plants. Int. J. Pure App. Biosci, 4(2), 245-249.
  • Martani, E., Wibowo, K., Radjagukguk, B., & Margino, S. (2001). Rhizobium sp. (Influence of Paraquat Herbicide on Soil Bacteria Rhizobium Sp.). Jurnal Manusia dan Lingkungan, 8(2), 82-90.
  • Peixoto, M. S. F. P., Peixoto, C. C., Sampaio, L. S. V., Sampaio, H. S. V., Souza, R. A. S., & Almeida, J. R. C. (2010). Action of the herbicide alachlor on soil, nodulation and yield of peanuts. Scientia Agraria Paranaensis, 9(2), 60-70.
  • Prodanov, I. (1980). The influence of herbicides and herbicide programmes on the root system and nodulation of lucerne. Rasteniev" dni Nauki, 17(8), 84-91.
  • Raghavendra, K. S., Gundappagol, R. C., & Santhosh, G. P. (2017). Impact of herbicide application on Beneficial soil microbial community, Nodulation and Yield parameters of chickpea (Cicer arietinum L.). Bull. Env. Pharmacol. Life Sci., Vol 6 Special issue [1] 2017: 154-159.
  • Santos, J. B., Silva, A. A., Costa, M. D., Jakelaitis, A., Vivian, R., & Santos, E. A. (2006). Herbicide action on the growth of Rhizobium tropici strains. Planta Daninha, 24(3), 457-465.
  • Schellenberger, S., Drake, H. L., & Kolb, S. (2012). Impairment of cellulose-and cellobiose-degrading soil Bacteria by two acidic herbicides. FEMS microbiology letters, 327(1), 60-65.
  • Sharma, P., & Khanna, V. (2011). In vitro sensitivity of rhizobium and phosphate solubilising bacteria to herbicides. Indian journal of microbiology, 51(2), 230-233. Shin, Y. S., & Oh, J. H. (1989). Effect of herbicides on the survival of soybean nodule bacteria (Rhizobium japonicum) in vitro. Korean Journal of Crop Science (Korea R.), 34(1), 86-91.
  • Shrila, D., Narendra, K., & Saxena, S. C. (2013). In-vitro effect of herbicides on the growth of Bradyrhizobium japonicum and phosphate solubilizing bacteria. Pantnagar Journal of Research, 11(1), 87-91.
  • Sulieman, S., & Tran, L. S. P. (2013). Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Critical Reviews in Biotechnology, 33(3), 309-327.
  • Zaid, A. M., Mayouf, M., & Said, Y. F. (2014). The effect of pre-emergent herbicides on soil microflora and N-fixing bacteria in pea field. Int J Sci: Basic and Appl Res, 15, 131-138.

BAKLAGİLLERDE HERBİSİT-BİYOLOJİK AZOT BAĞLAMA ETKİLEŞİMİ

Year 2019, Issue: 368, 53 - 63, 31.12.2019
https://doi.org/10.33724/zm.635998

Abstract

Baklagiller, azotu biyolojik olarak atmosferden bağlama kabiliyetine sahip türlerdir. Biyolojik azot fiksasyonu, çoklu streslere duyarlı bir sistemdir ve bu stres faktörlerinin etkisinin hafifletilmesi bu sistemin agroekosisteme olan katkısını artıracı etki yapacaktır. Tarım ilaçlarının çevreye olan etkisi, toprak mikroorganizmaları üzerindeki etkiyi de kapsamaktadır. Bu kimyasallardan biri olan herbisitlerin özellikle baklagillerle simbiyoza yapan azot bağlama bakterileri üzerindeki etkisi, tarımsal verimlilik üzerinde önemli etkilere sahiptir. Dünyada bu konuda yapılmış çalışmaların bir analizinin amaçlandığı bu derlemede, farklı baklagillerin nodülasyon ve azot bağlama yeteneğinin farklı herbisitlere tepkisi, herbisit uygulama zamanını, toprak koşulları ve kullanılan bakteri ırkı konuları değerlendirilmiştir.

References

  • Ahemad, M., & Khan, M. S. (2010). Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Annals of microbiology, 60(4), 735-745.
  • Aliverdi, A., & Ahmadvand, G. (2018). Herbicide Toxicity to Soybean–Rhizobium Symbiosis as Affected by Soil pH. Bulletin of environmental contamination and toxicology, 101(4), 434-438.
  • Clark, S. A. (1987). Herbicide Effects On White Clover Growth and Nodulation. Masters of Science Thesis in Microbiology, University of Canterbury.
  • Divito, G. A., & Sadras, V. O. (2014). How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Research, 156, 161-171.
  • Drevon, J. J., Alkama, N., Araujo, A., Beebe, S., Blair, M. W., Hamza, H., & Tajini, F. (2011). Nodular diagnosis for ecological engineering of the symbiotic nitrogen fixation with legumes. Procedia Environmental Sciences, 9, 40-46.
  • Dwivedi, S. L., Sahrawat, K. L., Upadhyaya, H. D., Mengoni, A., Galardini, M., Bazzicalupo, M., & Ortiz, R. (2015). Advances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. In Advances in Agronomy (Vol. 129, pp. 1-116). Academic Press.
  • Eberbach, P. L., & Douglas, L. A. (1989). Herbicide effects on the growth and nodulation potential ofRhizobium trifolii withTrifolium subterraneum L. Plant and Soil, 119(1), 15-23.
  • Eberbach, P. L., & Douglas, L. A. (1991). Effect of herbicide residues in a sandy loam on the growth, nodulation and nitrogenase activity (C 2 H 2/C 2 H 4) of Trifolium subterraneum. Plant and soil, 131(1), 67-76.
  • Izadi, D. E., & Soleimani, P. Z. (2016). Study the effect of different concentrations of metribuzin herbicide in soil on chickpea (Cicer arietinum L.), growth and nodulation.
  • Jeong-Hae, O. (1989). Effects of herbicide application on growth and the nodulation in soybean. Korean Journal of Crop Science, 34(3), 303-309.
  • Koval'zhiu, A. I., Apostolov, S. D., & Sabel'nikova, V. I. (1990). Effectiveness of the symbiosis of lucerne and nodule bacteria with applications of herbicides. Izvestiya Akademii Nauk Moldavskoĭ SSR. Biologicheskie i Khimicheskie Nauki, 248(5), 13-18.
  • Kriete, G., & Broer, I. (1996). Influence of the herbicide phosphinothricin on growth and nodulation capacity of Rhizobium meliloti. Applied microbiology and biotechnology, 46(5-6), 580-586.
  • Kurrey, D., Lakpale, R., & Rajput, R. S. (2016). Growth behavior, nodulation and Rhizobium population, as affected by combined application of herbicide and insecticide in soybean (Glycine max L.). J Pure Appl Microbio, 10(4), 2931-2936.
  • Liu, Y., Wu, L., Baddeley, J. A., & Watson, C. A. (2011). Models of biological nitrogen fixation of legumes. In Sustainable Agriculture Volume 2 (pp. 883-905). Springer, Dordrecht.
  • Maheswari, N. U., Barjana, B. F., & Senthilkumar, R. (2016). Development of Herbicide Tolerant Rhizobium Species From Different Leguminous Plants. Int. J. Pure App. Biosci, 4(2), 245-249.
  • Martani, E., Wibowo, K., Radjagukguk, B., & Margino, S. (2001). Rhizobium sp. (Influence of Paraquat Herbicide on Soil Bacteria Rhizobium Sp.). Jurnal Manusia dan Lingkungan, 8(2), 82-90.
  • Peixoto, M. S. F. P., Peixoto, C. C., Sampaio, L. S. V., Sampaio, H. S. V., Souza, R. A. S., & Almeida, J. R. C. (2010). Action of the herbicide alachlor on soil, nodulation and yield of peanuts. Scientia Agraria Paranaensis, 9(2), 60-70.
  • Prodanov, I. (1980). The influence of herbicides and herbicide programmes on the root system and nodulation of lucerne. Rasteniev" dni Nauki, 17(8), 84-91.
  • Raghavendra, K. S., Gundappagol, R. C., & Santhosh, G. P. (2017). Impact of herbicide application on Beneficial soil microbial community, Nodulation and Yield parameters of chickpea (Cicer arietinum L.). Bull. Env. Pharmacol. Life Sci., Vol 6 Special issue [1] 2017: 154-159.
  • Santos, J. B., Silva, A. A., Costa, M. D., Jakelaitis, A., Vivian, R., & Santos, E. A. (2006). Herbicide action on the growth of Rhizobium tropici strains. Planta Daninha, 24(3), 457-465.
  • Schellenberger, S., Drake, H. L., & Kolb, S. (2012). Impairment of cellulose-and cellobiose-degrading soil Bacteria by two acidic herbicides. FEMS microbiology letters, 327(1), 60-65.
  • Sharma, P., & Khanna, V. (2011). In vitro sensitivity of rhizobium and phosphate solubilising bacteria to herbicides. Indian journal of microbiology, 51(2), 230-233. Shin, Y. S., & Oh, J. H. (1989). Effect of herbicides on the survival of soybean nodule bacteria (Rhizobium japonicum) in vitro. Korean Journal of Crop Science (Korea R.), 34(1), 86-91.
  • Shrila, D., Narendra, K., & Saxena, S. C. (2013). In-vitro effect of herbicides on the growth of Bradyrhizobium japonicum and phosphate solubilizing bacteria. Pantnagar Journal of Research, 11(1), 87-91.
  • Sulieman, S., & Tran, L. S. P. (2013). Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Critical Reviews in Biotechnology, 33(3), 309-327.
  • Zaid, A. M., Mayouf, M., & Said, Y. F. (2014). The effect of pre-emergent herbicides on soil microflora and N-fixing bacteria in pea field. Int J Sci: Basic and Appl Res, 15, 131-138.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Uğur Sevilmis 0000-0003-3820-8387

Deniz Sevilmiş 0000-0003-3030-3160

Publication Date December 31, 2019
Submission Date October 22, 2019
Acceptance Date November 27, 2019
Published in Issue Year 2019 Issue: 368

Cite

APA Sevilmis, U., & Sevilmiş, D. (2019). BAKLAGİLLERDE HERBİSİT-BİYOLOJİK AZOT BAĞLAMA ETKİLEŞİMİ. Ziraat Mühendisliği(368), 53-63. https://doi.org/10.33724/zm.635998