Derleme
BibTex RIS Kaynak Göster

Böceklerde melanizasyon ve melanin temelli bağışıklık

Yıl 2017, Cilt: 7 Sayı: 2, 205 - 217, 17.10.2017
https://doi.org/10.16969/entoteb.319250

Öz

Böceklerde melanin gibi bir çok pigmentin etkili
olduğu renk ve desenlenmeler eşeysel davranışlar, uyarı renklenmesi ve kamuflaj
gibi farklı fonsiyonlar için hayati rol oynar. Kütikular melanin bir çok türde
genetik ve çevresel seçilime uğrar ve melanin kütikula sertleşmesi, yaraların
iyileşmesi ve omurgasızlardaki bağışıklıkta iş gören çok önemli bir bileşendir.
Melanin ve öncülleri bakteri, fungus ve virüslere kadar uzanan patojenlere
karşı geniş bir yelpazede koruyuculuk sağlar. Böceklerde kütikular melanizm ve
bazı doğal bağışıklık tepkileri ortak fizyolojik yolakları paylaşırlar.
Fenoloksidaz (PO) melanin sentezinin kilit enzimi olup hemolimf, bağırsak ve kütikulada
bulunur. Bir böcek hemolimfinde patojenle karşı karşıya geldiğinde hemositlerle
işgalci organizmanın etrafına birikerek etkisiz hale getirir (enkapsülasyon
tepkisi). Hemositler degranüle olarak tirozini L-DOPA’ya ve ardından çeşitli
difenol kinonlara dönüştüren tirozinaz fenoloksidaz salgılarlar. Bu substratlar
en sonunda melanokroma dönüşerek enzim içermeyen bir yolla melanine çevrilir.
Bu derlemede, özellikle melanin temelli bağışıklık tepkileri açısından böcek
fizyolojisinde melanizasyon süreci vurgulanmıştır. Ayrıca, küresel iklim
değişimi kapsamında, melanin temelli bağışıklık sistemi ile sıkı bir şekilde
ilişkisi olan termal melanin hipotezinin önemine dikkat çekilmiştir.

Kaynakça

  • Andersen, S. O. 2010. Insect cuticular sclerotization: a review. Insect Biochemistry and Molecular Biology, 40: 166-178.
  • Arakane, Y., N. T. Dittmer, Y. Tomoyasu, K. J. Kramer, S. Muthukrishnan, R. W. Beeman & M. R. Kanost, 2010. Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 40: 259–266.
  • Aroca, P., J. C. Garcia-Borron, F. Solano &, J. A. Lozano, 1990. Regulation of mammalian melanogenesis. I: Partial purification and characterization of a dopachrome converting factor: dopachrome tautomerase. Biochimica et Biophysica Acta, 1035: 266-275.
  • Arenas, L. M. & M. Stevens, 2017. Diversity in warning coloration is easily recognized by avian predators. Journal of Evolutionary Biology, (basımda, doi:10.1111/jeb.13074).
  • Barnes, A. I. & M. T. Siva-Jothy, 2000. Density–dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proceedings of the Royal Society B: Biological Sciences, 267: 177-182.
  • Baxter, R., H. G., A. Contet & K. Krueger, 2017. Arthropod innate immune systems and vector-borne diseases. Biochemistry, 56: 907-918.
  • Borovanský, J. 2011. History of melanosome research. 1–19. In: Melanins and Melanosomes: Biosynthesis, biogenesis, physiological and pathological functions (Eds. J. Borovanský & P. A. Riley), Wiley-VCH Verlag GmbH & Co. KGaA, 1st edition, 407 pp.
  • Brakefield, P. M. 1985. Polymorphism Mullerin mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biological Journal of the Linnean Society, 26: 243-267.
  • Brakefield, P. M. & N. Reitsma, 1991. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecological Entomology, 16: 291-303.
  • Burmester, T. 2002. Origin and evolution of arthropod hemocyanins and related proteins. Journal of Comparative Physiology B, 172: 95-107.
  • Buttstedt, A., R. F. A. Moritz & S. Erler, 2014. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biological Reviews, 89: 255-269.
  • Cerenius, L. & K. Söderhall, 2004. The prophenoloxidase-activating system in invertebrates. Immunological Review, 198: 116-126.
  • Clusella-Trullas, S., J. H. van Wyk & J. R. Spotila, 2007. Thermal melanism in ectoterms. Journal of Thermal Biology, 32: 235-245.
  • Clusella-Trullas, S., J. S. Terblanche, T. M. Blackburn & S. L. Chown 2008. Testing the thermal melanism hypothesis: a macrophysiological approach. Functional Ecology 22: 232-238.
  • Drapeau, M. D. 2001. The family of yellow-related Drosophila melanogaster proteins. Biochemical and Biophysical Research Communications, 281: 611–613.
  • De Jong, P.W., S. W. S. Gussekloo & P. M. Brakefield, 1996. Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions.Journal of Experimental Biology, 199: 2655-2666.
  • Drapeau, M. D., S. Albert, R. Kucharski, C. Prusko & R. Maleszka, 2006. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Research, 16: 1385-1394.
  • Ellers, J. & C.L. Boggs, 2004. Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies. Biological Journal of the Linnean Society, 82: 79-87.
  • Endler, J. A. 1984. Progressive background matching in moths, and a quantitative measure of crypsis.Biological Journal of Linnean Society, 22: 187-231.
  • Fedorka, K.M., E. K. Copeland & W. E. Winterhalter, 2013a. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects. Journal of Experimental Biology 216(21): 4005-4010.
  • Fedorka, K. M., V. Lee & W. E. Winterhalter, 2013b. Thermal environment shapes cuticle melanism and melanin-based immunity in the ground cricket Allonemobius socius. Evolutionary Ecology 27(3): 521-531.
  • Ferguson, L. C., J. Green, A. Surridge & C. D. Jiggins, 2011. Evolution of the insect yellow gene family. Molecular Biology and Evolution, 28(1): 257-272.
  • Forsman, A. 2000. Some like it hot: intra-population variation in behavioral thermoregulation in color-polymorphic pygmy grasshoppers. Evolutionary Ecology, 14: 25-38.
  • Galván, I., A. Jorge, P. Edelaar &, K. Wakamatsu, 2015. Insects synthesize pheomelanim. Pigment Cell & Melanoma Research, 28: 599-602.
  • Gibert, P., B. Moreteau, J.C. Moreteau, R. Parkash & J.R. David, 1998. Light body pigmentation in Indian Drosophila melanogaster: a likely adaptation to a hot and arid climate. Journal of Genetics, 77: 13-20.
  • Gillespie, J. P., M. R. Kanost & T. Trenczek, 1997. Biological mediators of insect immunity. Annual Review of Entomology, 42: 611-643.
  • Gonzalez-Santoyo, I. & A. Cordoba-Aguilar, 2012. Phenoloxidase: a key component of the insect immune system. Entomologia Experimentalis et Applicata, 142: 1-16.
  • Gunn, A. 1998. The determination of larval phase coloration in the African armyworm, Spodoptera exempta and its consequences for thermoregulation and protection from UV light. Entomologia Experimentalis et Applicata, 86: 125-133.
  • Han, Q., J. Fang, H. Ding, J. K. Johnson, B. M. Christensen & J. Li, 2002. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochemical Journal, 368: 333-340.
  • Ito, K., S. Katsuma, K. Yamamoto, K. Kadono-Okuda, K. Mita & T. Shimada, 2010. Yellow-e determines the color pattern of larval head and tail spots of the silkworm Bombyx mori. The Journal of Biological Chemistry, 285: 5624-5629.
  • Kemp, D. J. & R. L. Rutowski, 2011. The role of coloration in mate choice and sexual ınteractions in butterflies. Advances in the Study of Behavior, 4: 55-92.
  • Kettlewell, B. 1973. The Evolution of Melanism. The study of a recurring necessity, with special reference to industrial melanism in the Lepidoptera. Clarendon Press: Oxford, 423 pp.
  • Kingsolver, J.G. 1987. Evolution and coadaptation of thermoregulatory behavior and wing pigmentation pattern in pierid butterflies. Evolution, 41: 472–490.
  • Kingsolver, J. G. & D. C. Wiernasz, 1991. Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies. American Naturalist, 137: 816-830.
  • Kutch, I. C., H. Sevgili, T. Wittman & K. M. Fedorka, 2014. Thermoregulation strategy may shape immune investment in Drosophila melanogaster. The Journal of Experimental Biology, 217: 3664-3669.
  • Jacobs, M.D. & W.B. Watt, 1994. Seasonal adaptation vs physiological constraint: Photoperiod, thermoregulation and flight in Colias butterflies. Functional Ecology 8: 366-376.
  • Lavine, M. D. & M. R. Strand, 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32: 1295-309.
  • Lawniczak, M. K. N., A. I. Barnes, J. R. Linklater, J. M. Boone, S. Wigby & T. Chapman, 2006. Mating and immunity in invertebrates. Trends Ecology and Evolution, 22: 48–55.
  • Li, J., J.W. Tracy & B.M. Christensen, 1992. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Developmental & Comparative Immunology 16: 41–48.
  • Li, J. S., C. J. Vavricka, B. M. Christensen & J. Li, 2007. Proteomics analysis of N-glycosylation in mosquito dopachrome conversion enzyme. Proteomics, 7: 2557-2569.
  • Lindstedt, C., H. Eager, E. Ihalainen & A. Kahilainen. 2011. Direction and strength of selection by predators fort he color of the aposematic wood tiger moth. Behavioral Ecology, 22: 580-587.
  • Liu, J., T. R. Lemonds, J. H. Marden & A. Popadic, 2016. A pathway analysis of melanin patterning in a hemimetabolous insect. Genetics, 203: 403-413.
  • Majerus, M. E. N., P. O’Donald & J. Weir, 1982. Female mating preference is genetic. Nature, 300: 521-523.
  • Maleszka, R. & R. Kucharski, 2000. Analysis of Drosophila yellow-B cDNA reveals a new family of proteins related to the royal jelly proteins in the honeybee and to an orphan protein in an unusual bacterium Deinococcus radiodurans. Biochemical and Biophysical Research Communications, 270:773–776.
  • Miller, C. W. & S. D. Hollander, 2010. Predation on heliconia bugs, Leptoscelis tricolor: examining the influences of crypsis and predator color preferences. Journal of Insect Behavior, 88: 122-128.
  • Nappi, A. J. & E. Vass, 1993. Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Research, 6: 117-126.
  • Nappi, A. J., E. Vass, F. Frey & Y. Carton, 1995. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. European Journal of Cell Biology, 68: 450-456.
  • Nappi, A. J. & B. M. Christensen, 2005. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochemistry and Molecular Biology, 35: 443-459.
  • Outomuro, D. & F. J. Ocharan, 2011. Wing pigmentation in Calopteryx damselflies: a role in thermoregulation? Biological Journal of the Linnean Society, 103: 36-44.
  • Perrard, A., M. Arca, Q. Rome, F. Muller, J. Tan, S. Bista, H. Nugroho, R. Baudoin, M. Baylac, J-F. Sİlvain, J. M. Carpenter & C. Villemant, 2014. Geographic variation of melanisation patterns in a hornet species: genetic differences, climatic pressures or aposematic constraints? PLoS ONE 9(4): e94162.
  • Porter, W.P. & D. M. Gates, 1969. Thermodynamic equilibria of animals with environment. Ecological Monographs, 39: 245-270.
  • Prokkola, J., D. Roff, T. Kärkkäinen, I. Krams & M. J. Rantala, 2013. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor. Heredity, 111: 89-96.
  • Punzalan, D., F. H. Rodd & L. Rowe, 2008. Sexual selection mediated by the thermoregulatory effects of male colour pattern in the ambush bug Phymata americana. Proceedings of the Royal Society B: Biological Sciences, 275: 483-492.
  • Robb, T., M. R. Forbes & I. G. Jamieson, 2003. Greater cuticular melanism is not assocated with greater immunogenic response in adults of the polymorphic mountain stone weta, Hemidenia maori. Ecological Entomoloy, 28: 738-746.
  • Roff, D. A. & D. J. Fairbairn, 2013. The costs of being dark: the genetic basis of melanism and its association with fitness-related traits in the sand cricket. Journal of Evolutionary Biology, 26: 1406-1416.
  • Rolff, J. & M. T. Siva-Jothy, 2003. Invertebrate ecological immunology. Science, 301: 472-475.
  • Shamim, G., S. K. Ranjan, D. M. Pandey & R. Ramani, 2014. Biochemistry and biosynthesis of insect pigments. European Journal of Entomology, 111: 149-164.
  • Shuai, Z., G. Qiuhong, L. Minghui, L. Muwang, L. Jianyong, M. Xuexia & H. Yongping, 2010. Disruption of an N-acetyltransferase gene in the silkworm reveals a novel role in pigmentation. Development, 137: 4083-4090.
  • Siva-Jothy, M. T. 2000. A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proceedings of the Royal Society B: Biological Sciences, 267: 2523-2527.
  • Solano, F. 2014. Melanins: skin pigments and much more types, structural models, biological functions, and formation routes. Hindawi New Journal of Science, 2014: 1-28.
  • Söderhall, K. & L. Cerenius, 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology, 10: 23-28.
  • Stoehr, A. M. & E. M. Wojan, 2016. Multiple cues influence multiple traits in the phenotypically plastic melanization of the cabbage white butterfly. Oecologia, 182: 691-701.
  • Sugumaran, M. & H. Barek, 2016. Critical analysis of the melanogenic pathway in insects and higher animals. International Journal of Molecular Sciences, 17: 1753.
  • Thery, M. & D. Gomez, 2010. Insect colours and visual appearance in the eyes of their predators. Advances in Insect Physiology: Insect Integument and Colour, 38: 267-353.
  • Tsakas, S. & V. J. Marmaras, 2010. Insect immunity and its signalling: an overview. Isj-Invertebrate Survival Journal 7(2): 228-238.
  • Turner, J. R. G. 1977. Butterfly mimicry: The genetical evolution of an adaptation. Evolutionary Biology, 10: 163-206.
  • Vavricka, C. J., B. M. Christensen & J. Li, 2010. Melanization in living organisms: a perspective of species evolution, Protein & Cell, 9: 830-841.
  • Waterhouse, R. M., E. V. Kriventseva, S. Meister, Z. Xi & K. S. Avarez, et al., 2007. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science, 316: 1738-1743.
  • Watt, W.B. 1968. Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evolution, 22: 437–458.
  • Wiernasz, D. C. 1989. Ecological and genetic correlates of range expansion in Coenonympha tullia. Biological Journal of the Linnean Society, 38: 197-214.
  • Wilson, K., S. C. Cotter, A. F. Reeson & J. K. Pell, 2001. Melanism and disease resistance in insects. Ecology Letters, 4: 637-649.
  • Winding, J. J. 1998. Evolutionary genetics of fluctating asymmetry in the peacock butterfly (Inachis io). Heredity, 80: 382-392.
  • Wittkopp, P. J. & P. Beldade, 2009. Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Seminars Cell & Developmental Biology, 20: 65-71.
  • Wittkopp, P. J. 2002. Evolution of yellow gene regulation and pigmentation in Drosophila. Current Biology, 12: 1547-1556.
  • Xia, A., Q. Zhou, L. Yu, W. Li, Y. Yi, Y. Zhang & Z. Zhang 2006. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori. BMC Genomics, 7: 195.
  • Yin, H. C., Q. H. Shi, M. Shakeel, J. Kuang & J. H. Li, 2016. The environmental plasticity of diverse body color caused by extremely long photoperiods and high temperature in Saccharosydne procerus (Homoptera: Delphacidae). Frontiers in Physiology, 7.

Melanisation and melanin-based immunity in insects

Yıl 2017, Cilt: 7 Sayı: 2, 205 - 217, 17.10.2017
https://doi.org/10.16969/entoteb.319250

Öz

The use of color patterns with pigments, such as melanin, play a vital
role for various functions in insects including sexual behavior, warning
coloration, and camouflage. Cuticular melanin appears to be under some genetic
and environmental selection in many species and, melanin is also a crucial
component in cuticular hardening, wound healing and invertebrate immunity.
Melanin and its precursors provides a protection against a wide range of
pathogens (including bacteria, fungi, animals and viruses) in insects.
Cuticular melanism and some innate immune responses can share common
physiological pathways in insects. Phenoloxidase
(PO), a key enzyme in the synthesis of melanin, is found in the haemolymph,
midgut and cuticle.
When an insect host is confronted with a
hemocoel-bound pathogen, it encapsulates the invading organism with hemocytes
(encapsulation response). The hemocytes degranulate to release a tyrosinase
phenoloxidase, which converts tyrosine to L-DOPA and several other diphenol
quinones. These substrates are eventually transformed into melanochrome, which
non-enzymatically converts to melanin. In this review, importance of the
melanisation process in insect pyhsiology especially in melanin-based innate
immunity responses is highlighted. Additionaly, a special attention is given
the importance of the thermal melanin hypothesis, which is tightly associated
with melanin-based immune investment within the context of global climate
change.

Kaynakça

  • Andersen, S. O. 2010. Insect cuticular sclerotization: a review. Insect Biochemistry and Molecular Biology, 40: 166-178.
  • Arakane, Y., N. T. Dittmer, Y. Tomoyasu, K. J. Kramer, S. Muthukrishnan, R. W. Beeman & M. R. Kanost, 2010. Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 40: 259–266.
  • Aroca, P., J. C. Garcia-Borron, F. Solano &, J. A. Lozano, 1990. Regulation of mammalian melanogenesis. I: Partial purification and characterization of a dopachrome converting factor: dopachrome tautomerase. Biochimica et Biophysica Acta, 1035: 266-275.
  • Arenas, L. M. & M. Stevens, 2017. Diversity in warning coloration is easily recognized by avian predators. Journal of Evolutionary Biology, (basımda, doi:10.1111/jeb.13074).
  • Barnes, A. I. & M. T. Siva-Jothy, 2000. Density–dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proceedings of the Royal Society B: Biological Sciences, 267: 177-182.
  • Baxter, R., H. G., A. Contet & K. Krueger, 2017. Arthropod innate immune systems and vector-borne diseases. Biochemistry, 56: 907-918.
  • Borovanský, J. 2011. History of melanosome research. 1–19. In: Melanins and Melanosomes: Biosynthesis, biogenesis, physiological and pathological functions (Eds. J. Borovanský & P. A. Riley), Wiley-VCH Verlag GmbH & Co. KGaA, 1st edition, 407 pp.
  • Brakefield, P. M. 1985. Polymorphism Mullerin mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biological Journal of the Linnean Society, 26: 243-267.
  • Brakefield, P. M. & N. Reitsma, 1991. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecological Entomology, 16: 291-303.
  • Burmester, T. 2002. Origin and evolution of arthropod hemocyanins and related proteins. Journal of Comparative Physiology B, 172: 95-107.
  • Buttstedt, A., R. F. A. Moritz & S. Erler, 2014. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biological Reviews, 89: 255-269.
  • Cerenius, L. & K. Söderhall, 2004. The prophenoloxidase-activating system in invertebrates. Immunological Review, 198: 116-126.
  • Clusella-Trullas, S., J. H. van Wyk & J. R. Spotila, 2007. Thermal melanism in ectoterms. Journal of Thermal Biology, 32: 235-245.
  • Clusella-Trullas, S., J. S. Terblanche, T. M. Blackburn & S. L. Chown 2008. Testing the thermal melanism hypothesis: a macrophysiological approach. Functional Ecology 22: 232-238.
  • Drapeau, M. D. 2001. The family of yellow-related Drosophila melanogaster proteins. Biochemical and Biophysical Research Communications, 281: 611–613.
  • De Jong, P.W., S. W. S. Gussekloo & P. M. Brakefield, 1996. Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions.Journal of Experimental Biology, 199: 2655-2666.
  • Drapeau, M. D., S. Albert, R. Kucharski, C. Prusko & R. Maleszka, 2006. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Research, 16: 1385-1394.
  • Ellers, J. & C.L. Boggs, 2004. Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies. Biological Journal of the Linnean Society, 82: 79-87.
  • Endler, J. A. 1984. Progressive background matching in moths, and a quantitative measure of crypsis.Biological Journal of Linnean Society, 22: 187-231.
  • Fedorka, K.M., E. K. Copeland & W. E. Winterhalter, 2013a. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects. Journal of Experimental Biology 216(21): 4005-4010.
  • Fedorka, K. M., V. Lee & W. E. Winterhalter, 2013b. Thermal environment shapes cuticle melanism and melanin-based immunity in the ground cricket Allonemobius socius. Evolutionary Ecology 27(3): 521-531.
  • Ferguson, L. C., J. Green, A. Surridge & C. D. Jiggins, 2011. Evolution of the insect yellow gene family. Molecular Biology and Evolution, 28(1): 257-272.
  • Forsman, A. 2000. Some like it hot: intra-population variation in behavioral thermoregulation in color-polymorphic pygmy grasshoppers. Evolutionary Ecology, 14: 25-38.
  • Galván, I., A. Jorge, P. Edelaar &, K. Wakamatsu, 2015. Insects synthesize pheomelanim. Pigment Cell & Melanoma Research, 28: 599-602.
  • Gibert, P., B. Moreteau, J.C. Moreteau, R. Parkash & J.R. David, 1998. Light body pigmentation in Indian Drosophila melanogaster: a likely adaptation to a hot and arid climate. Journal of Genetics, 77: 13-20.
  • Gillespie, J. P., M. R. Kanost & T. Trenczek, 1997. Biological mediators of insect immunity. Annual Review of Entomology, 42: 611-643.
  • Gonzalez-Santoyo, I. & A. Cordoba-Aguilar, 2012. Phenoloxidase: a key component of the insect immune system. Entomologia Experimentalis et Applicata, 142: 1-16.
  • Gunn, A. 1998. The determination of larval phase coloration in the African armyworm, Spodoptera exempta and its consequences for thermoregulation and protection from UV light. Entomologia Experimentalis et Applicata, 86: 125-133.
  • Han, Q., J. Fang, H. Ding, J. K. Johnson, B. M. Christensen & J. Li, 2002. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochemical Journal, 368: 333-340.
  • Ito, K., S. Katsuma, K. Yamamoto, K. Kadono-Okuda, K. Mita & T. Shimada, 2010. Yellow-e determines the color pattern of larval head and tail spots of the silkworm Bombyx mori. The Journal of Biological Chemistry, 285: 5624-5629.
  • Kemp, D. J. & R. L. Rutowski, 2011. The role of coloration in mate choice and sexual ınteractions in butterflies. Advances in the Study of Behavior, 4: 55-92.
  • Kettlewell, B. 1973. The Evolution of Melanism. The study of a recurring necessity, with special reference to industrial melanism in the Lepidoptera. Clarendon Press: Oxford, 423 pp.
  • Kingsolver, J.G. 1987. Evolution and coadaptation of thermoregulatory behavior and wing pigmentation pattern in pierid butterflies. Evolution, 41: 472–490.
  • Kingsolver, J. G. & D. C. Wiernasz, 1991. Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies. American Naturalist, 137: 816-830.
  • Kutch, I. C., H. Sevgili, T. Wittman & K. M. Fedorka, 2014. Thermoregulation strategy may shape immune investment in Drosophila melanogaster. The Journal of Experimental Biology, 217: 3664-3669.
  • Jacobs, M.D. & W.B. Watt, 1994. Seasonal adaptation vs physiological constraint: Photoperiod, thermoregulation and flight in Colias butterflies. Functional Ecology 8: 366-376.
  • Lavine, M. D. & M. R. Strand, 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32: 1295-309.
  • Lawniczak, M. K. N., A. I. Barnes, J. R. Linklater, J. M. Boone, S. Wigby & T. Chapman, 2006. Mating and immunity in invertebrates. Trends Ecology and Evolution, 22: 48–55.
  • Li, J., J.W. Tracy & B.M. Christensen, 1992. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Developmental & Comparative Immunology 16: 41–48.
  • Li, J. S., C. J. Vavricka, B. M. Christensen & J. Li, 2007. Proteomics analysis of N-glycosylation in mosquito dopachrome conversion enzyme. Proteomics, 7: 2557-2569.
  • Lindstedt, C., H. Eager, E. Ihalainen & A. Kahilainen. 2011. Direction and strength of selection by predators fort he color of the aposematic wood tiger moth. Behavioral Ecology, 22: 580-587.
  • Liu, J., T. R. Lemonds, J. H. Marden & A. Popadic, 2016. A pathway analysis of melanin patterning in a hemimetabolous insect. Genetics, 203: 403-413.
  • Majerus, M. E. N., P. O’Donald & J. Weir, 1982. Female mating preference is genetic. Nature, 300: 521-523.
  • Maleszka, R. & R. Kucharski, 2000. Analysis of Drosophila yellow-B cDNA reveals a new family of proteins related to the royal jelly proteins in the honeybee and to an orphan protein in an unusual bacterium Deinococcus radiodurans. Biochemical and Biophysical Research Communications, 270:773–776.
  • Miller, C. W. & S. D. Hollander, 2010. Predation on heliconia bugs, Leptoscelis tricolor: examining the influences of crypsis and predator color preferences. Journal of Insect Behavior, 88: 122-128.
  • Nappi, A. J. & E. Vass, 1993. Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Research, 6: 117-126.
  • Nappi, A. J., E. Vass, F. Frey & Y. Carton, 1995. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. European Journal of Cell Biology, 68: 450-456.
  • Nappi, A. J. & B. M. Christensen, 2005. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochemistry and Molecular Biology, 35: 443-459.
  • Outomuro, D. & F. J. Ocharan, 2011. Wing pigmentation in Calopteryx damselflies: a role in thermoregulation? Biological Journal of the Linnean Society, 103: 36-44.
  • Perrard, A., M. Arca, Q. Rome, F. Muller, J. Tan, S. Bista, H. Nugroho, R. Baudoin, M. Baylac, J-F. Sİlvain, J. M. Carpenter & C. Villemant, 2014. Geographic variation of melanisation patterns in a hornet species: genetic differences, climatic pressures or aposematic constraints? PLoS ONE 9(4): e94162.
  • Porter, W.P. & D. M. Gates, 1969. Thermodynamic equilibria of animals with environment. Ecological Monographs, 39: 245-270.
  • Prokkola, J., D. Roff, T. Kärkkäinen, I. Krams & M. J. Rantala, 2013. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor. Heredity, 111: 89-96.
  • Punzalan, D., F. H. Rodd & L. Rowe, 2008. Sexual selection mediated by the thermoregulatory effects of male colour pattern in the ambush bug Phymata americana. Proceedings of the Royal Society B: Biological Sciences, 275: 483-492.
  • Robb, T., M. R. Forbes & I. G. Jamieson, 2003. Greater cuticular melanism is not assocated with greater immunogenic response in adults of the polymorphic mountain stone weta, Hemidenia maori. Ecological Entomoloy, 28: 738-746.
  • Roff, D. A. & D. J. Fairbairn, 2013. The costs of being dark: the genetic basis of melanism and its association with fitness-related traits in the sand cricket. Journal of Evolutionary Biology, 26: 1406-1416.
  • Rolff, J. & M. T. Siva-Jothy, 2003. Invertebrate ecological immunology. Science, 301: 472-475.
  • Shamim, G., S. K. Ranjan, D. M. Pandey & R. Ramani, 2014. Biochemistry and biosynthesis of insect pigments. European Journal of Entomology, 111: 149-164.
  • Shuai, Z., G. Qiuhong, L. Minghui, L. Muwang, L. Jianyong, M. Xuexia & H. Yongping, 2010. Disruption of an N-acetyltransferase gene in the silkworm reveals a novel role in pigmentation. Development, 137: 4083-4090.
  • Siva-Jothy, M. T. 2000. A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proceedings of the Royal Society B: Biological Sciences, 267: 2523-2527.
  • Solano, F. 2014. Melanins: skin pigments and much more types, structural models, biological functions, and formation routes. Hindawi New Journal of Science, 2014: 1-28.
  • Söderhall, K. & L. Cerenius, 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology, 10: 23-28.
  • Stoehr, A. M. & E. M. Wojan, 2016. Multiple cues influence multiple traits in the phenotypically plastic melanization of the cabbage white butterfly. Oecologia, 182: 691-701.
  • Sugumaran, M. & H. Barek, 2016. Critical analysis of the melanogenic pathway in insects and higher animals. International Journal of Molecular Sciences, 17: 1753.
  • Thery, M. & D. Gomez, 2010. Insect colours and visual appearance in the eyes of their predators. Advances in Insect Physiology: Insect Integument and Colour, 38: 267-353.
  • Tsakas, S. & V. J. Marmaras, 2010. Insect immunity and its signalling: an overview. Isj-Invertebrate Survival Journal 7(2): 228-238.
  • Turner, J. R. G. 1977. Butterfly mimicry: The genetical evolution of an adaptation. Evolutionary Biology, 10: 163-206.
  • Vavricka, C. J., B. M. Christensen & J. Li, 2010. Melanization in living organisms: a perspective of species evolution, Protein & Cell, 9: 830-841.
  • Waterhouse, R. M., E. V. Kriventseva, S. Meister, Z. Xi & K. S. Avarez, et al., 2007. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science, 316: 1738-1743.
  • Watt, W.B. 1968. Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evolution, 22: 437–458.
  • Wiernasz, D. C. 1989. Ecological and genetic correlates of range expansion in Coenonympha tullia. Biological Journal of the Linnean Society, 38: 197-214.
  • Wilson, K., S. C. Cotter, A. F. Reeson & J. K. Pell, 2001. Melanism and disease resistance in insects. Ecology Letters, 4: 637-649.
  • Winding, J. J. 1998. Evolutionary genetics of fluctating asymmetry in the peacock butterfly (Inachis io). Heredity, 80: 382-392.
  • Wittkopp, P. J. & P. Beldade, 2009. Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Seminars Cell & Developmental Biology, 20: 65-71.
  • Wittkopp, P. J. 2002. Evolution of yellow gene regulation and pigmentation in Drosophila. Current Biology, 12: 1547-1556.
  • Xia, A., Q. Zhou, L. Yu, W. Li, Y. Yi, Y. Zhang & Z. Zhang 2006. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori. BMC Genomics, 7: 195.
  • Yin, H. C., Q. H. Shi, M. Shakeel, J. Kuang & J. H. Li, 2016. The environmental plasticity of diverse body color caused by extremely long photoperiods and high temperature in Saccharosydne procerus (Homoptera: Delphacidae). Frontiers in Physiology, 7.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Bölüm Derleme
Yazarlar

Hasan Sevgili

Yayımlanma Tarihi 17 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 2

Kaynak Göster

APA Sevgili, H. (2017). Böceklerde melanizasyon ve melanin temelli bağışıklık. Türkiye Entomoloji Bülteni, 7(2), 205-217. https://doi.org/10.16969/entoteb.319250
AMA Sevgili H. Böceklerde melanizasyon ve melanin temelli bağışıklık. Türkiye Entomoloji Bülteni. Ekim 2017;7(2):205-217. doi:10.16969/entoteb.319250
Chicago Sevgili, Hasan. “Böceklerde Melanizasyon Ve Melanin Temelli bağışıklık”. Türkiye Entomoloji Bülteni 7, sy. 2 (Ekim 2017): 205-17. https://doi.org/10.16969/entoteb.319250.
EndNote Sevgili H (01 Ekim 2017) Böceklerde melanizasyon ve melanin temelli bağışıklık. Türkiye Entomoloji Bülteni 7 2 205–217.
IEEE H. Sevgili, “Böceklerde melanizasyon ve melanin temelli bağışıklık”, Türkiye Entomoloji Bülteni, c. 7, sy. 2, ss. 205–217, 2017, doi: 10.16969/entoteb.319250.
ISNAD Sevgili, Hasan. “Böceklerde Melanizasyon Ve Melanin Temelli bağışıklık”. Türkiye Entomoloji Bülteni 7/2 (Ekim 2017), 205-217. https://doi.org/10.16969/entoteb.319250.
JAMA Sevgili H. Böceklerde melanizasyon ve melanin temelli bağışıklık. Türkiye Entomoloji Bülteni. 2017;7:205–217.
MLA Sevgili, Hasan. “Böceklerde Melanizasyon Ve Melanin Temelli bağışıklık”. Türkiye Entomoloji Bülteni, c. 7, sy. 2, 2017, ss. 205-17, doi:10.16969/entoteb.319250.
Vancouver Sevgili H. Böceklerde melanizasyon ve melanin temelli bağışıklık. Türkiye Entomoloji Bülteni. 2017;7(2):205-17.