Araştırma Makalesi
BibTex RIS Kaynak Göster

Candida vanderwaltii CMGB-ST1 from Peony Petals – Identification and Biotechnological Potential

Yıl 2018, Sayı: 3, 1 - 10, 01.12.2018

Öz

Yeasts are an important group of microorganisms with a wide range of biotechnological applications, able to synthetize various enzymes (lipases, proteases) and chemical compounds (pigments, flavor precursors). Many yeast strains are used for biocontrol in agriculture or for biomedical applications due to their ability to inhibit the growth of pathogenic microorganisms isolated from crops or nosocomial infections. Candida vanderwaltii is one of the yeast species isolated from natural environment with multiple, yet unexplored, applications. The present work deals with the identification and characterization of the new yeast strain CMGB-ST1 isolated from peony (Paeonia lactiflora) petals from Bucharest Botanical Garden (Romania). 

The conventional tests (classic, BIOLOG system) and PCR-RFLP analyses of the ITS1-5,8S-ITS2 region showed that CMGB-ST1 belongs to Candida vanderwaltii species. Further tests were performed for determination of lipase production on optimized media with trybutirin as sole carbon source supplemented with Tween 80. The strain C. vanderwaltii CMGB-ST1 showed good lipolytic activity forming clear halos after only three days of incubation. The mechanism of trybutyrin assimilation was studied using two different liquid media containing trybutirin and inorganic nitrogen source and trybutirin-glucose as carbon source and organic nitrogen source. The results showed that lipase synthesis during the first three days of monitoring is mainly influenced by the carbon source because adding glucose increases the growth rate of the yeast cells.  C. vanderwaltii CMGB-ST1 had also high antimicrobial activity against pathogenic and industrial Candida strains in presence of low pH values. In conclusion, the newly characterized strain C. vanderwaltii CMGB-G1 isolated from peony petals proved important potential for biotechnological and biomedical applications. 


Kaynakça

  • Arévalo-Villena, M., Fernandez-Pacheco, P., Castillo, N., Bevilacqua, A., & Pérez, A. B. (2018). Probiotic capability in yeasts: Set-up of a screening method. LWT Food Science and Technology, 89, 657-665. Bajaj, BK, Raina, S., & Singh, S., (2013). Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. Journal of Basic Microbiology, 53(8), 645-656. Belda, I., Ruiz, J., Alonso, A., Marquina, D., & Santos, A., (2017). The Biology of ‘’Pichia membranifaciens’’ Killer Toxins. Toxins (Basel), 9(4), 112-140. Corbu, V., Sârbu, I., Vassu-Dimov, T., Petruț, Ș., Bîlea, F., Stoica, I., & Csutak, O., Characterization of a food related strain Debaryomyces hansenii CMGB 60 with high biotechnological potential, 9th National Congress with International Participation and 35th Annual Scientific Session of The Romanian Society of Cell Biology, 7-11 June 2017, Iaşi, Romania, Bulletin of Romanian Society for Cell Biology, nr 45, p. 85, Poster Cristobal-Sarramian, A., & Atzmüller, D. (2018). Yeast as a production platform in biorefineries: conversion of agricultural residues into value-added products. Agronomy Research 16(2), 377-388. Csutak, O, Cîrpici, I, Ionescu, R, Stoica, I, Vassu, T., (2015). Anti-Candida Activity of Kluyveromyces lactis CMGB 226 from dairy products. Innovation Rom Food Biotechnology, 17, 46-56. Csutak, O., Sabau, E., Pelinescu, D., Corbu, V., Cirpici, I., & Vassu, T. (2016). Molecular identification and metabolic screening of some yeast strains from foods. AgroLife Scientific Journal, 5(1), 51-58. Csutak, O., (2014). Genetics and biodiversity of yeasts with biotechnological applications. University of Bucharest (Ed), ISBN 978-606-16-0483-8575. De Ingeniis, J., Raffaelli, N., Ciani, M., & Mannazzu, I., (2009). Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Applied Environmental Microbilogy. 75(4):1129-1134. Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: is it time for a new paradigm?. Postharvest biology and technology, 52(2), 137-145. Esteve-Zarzoso, B., Belloch, C., Uruburu, F., & Querol, A. (1999). Identification of yeasts by RFLP analysis of the 5.8 S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic and evolutionary microbiology, 49(1), 329-337. Ferraz, L.P., Cunha, T., da Silva, A.C., Kupper, K.C., (2016) Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiological Research. 72(79), 188-189. Heidor, R., Festa Ortega, J., de Conti, A., Prates Ong, T., & Salvador Moreno, F. (2012). Anticarcinogenic actions of tributyrin, a butyric acid prodrug. Current drug targets, 13(14), 1720-1729. Kuefer, R., Hofer, M. D., Altug, V., Zorn, C., Genze, F., Kunzi-Rapp, K.., & Gschwend, J.E., (2004). Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. British journal of cancer, 90(2), 535-541. Kurtzman, C.P., Fell, J.W., Boekhout T., (2011). The yeats. A Taxonomic Study (5th Ed). Elsevier, SUA. Rodrigues, L., Banat, I.M., Teixeira, J., & Oliveira, R., (2006). Biosurfactants: potential applications in medicine, Journal of Antimicrobial Chemotherapy, (57)4, 609–618. Lima, G., Ippolito, A., Nigro, F., & Salerno, M. (1997). Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biology and Technology, 10(2), 169-178. López-García, B., Veyrat, A., Pérez Payá, E., González Candelas, L., & Marcos, J.F., (2003). Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. International Journal of Food Microbiology, 89(2): 163–170. Love, K. R., Dalvie, N. C., & Love, J. C. (2018). The yeast stands alone: the future of protein biologic production. Current opinion in biotechnology, 53, 50-58. Mattanovich, D., Sauer, M., Gasser, B., (2014). Yeast biotechnology: Teaching the old dog new tricks. Microbial Cell Factories, 13(1):1-5. Muccilli, S., Restuccia, C., (2015). Bioprotective Role of Yeasts. Microorganisms. 3(4), 588-611. Passoth, V., Schnürer J. (2003) Non-conventional yeasts in antifungal application. In: de Winde J.H. (eds) Functional Genetics of Industrial Yeasts. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg Perez, M.F., Contreras, L., Garnica, N.M., Fernaandez-Zenoff, M.V., Farõaas, M.E., Sepulveda, M., et al. (2016) Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons. PLoS ONE 11(10): e0165590. Pincus, D. H., Orenga, S., & Chatellier, S. (2007). Yeast identification—past, present, and future methods. Medical mycology, 45(2), 97-121.
Yıl 2018, Sayı: 3, 1 - 10, 01.12.2018

Öz

Kaynakça

  • Arévalo-Villena, M., Fernandez-Pacheco, P., Castillo, N., Bevilacqua, A., & Pérez, A. B. (2018). Probiotic capability in yeasts: Set-up of a screening method. LWT Food Science and Technology, 89, 657-665. Bajaj, BK, Raina, S., & Singh, S., (2013). Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. Journal of Basic Microbiology, 53(8), 645-656. Belda, I., Ruiz, J., Alonso, A., Marquina, D., & Santos, A., (2017). The Biology of ‘’Pichia membranifaciens’’ Killer Toxins. Toxins (Basel), 9(4), 112-140. Corbu, V., Sârbu, I., Vassu-Dimov, T., Petruț, Ș., Bîlea, F., Stoica, I., & Csutak, O., Characterization of a food related strain Debaryomyces hansenii CMGB 60 with high biotechnological potential, 9th National Congress with International Participation and 35th Annual Scientific Session of The Romanian Society of Cell Biology, 7-11 June 2017, Iaşi, Romania, Bulletin of Romanian Society for Cell Biology, nr 45, p. 85, Poster Cristobal-Sarramian, A., & Atzmüller, D. (2018). Yeast as a production platform in biorefineries: conversion of agricultural residues into value-added products. Agronomy Research 16(2), 377-388. Csutak, O, Cîrpici, I, Ionescu, R, Stoica, I, Vassu, T., (2015). Anti-Candida Activity of Kluyveromyces lactis CMGB 226 from dairy products. Innovation Rom Food Biotechnology, 17, 46-56. Csutak, O., Sabau, E., Pelinescu, D., Corbu, V., Cirpici, I., & Vassu, T. (2016). Molecular identification and metabolic screening of some yeast strains from foods. AgroLife Scientific Journal, 5(1), 51-58. Csutak, O., (2014). Genetics and biodiversity of yeasts with biotechnological applications. University of Bucharest (Ed), ISBN 978-606-16-0483-8575. De Ingeniis, J., Raffaelli, N., Ciani, M., & Mannazzu, I., (2009). Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Applied Environmental Microbilogy. 75(4):1129-1134. Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: is it time for a new paradigm?. Postharvest biology and technology, 52(2), 137-145. Esteve-Zarzoso, B., Belloch, C., Uruburu, F., & Querol, A. (1999). Identification of yeasts by RFLP analysis of the 5.8 S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic and evolutionary microbiology, 49(1), 329-337. Ferraz, L.P., Cunha, T., da Silva, A.C., Kupper, K.C., (2016) Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiological Research. 72(79), 188-189. Heidor, R., Festa Ortega, J., de Conti, A., Prates Ong, T., & Salvador Moreno, F. (2012). Anticarcinogenic actions of tributyrin, a butyric acid prodrug. Current drug targets, 13(14), 1720-1729. Kuefer, R., Hofer, M. D., Altug, V., Zorn, C., Genze, F., Kunzi-Rapp, K.., & Gschwend, J.E., (2004). Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. British journal of cancer, 90(2), 535-541. Kurtzman, C.P., Fell, J.W., Boekhout T., (2011). The yeats. A Taxonomic Study (5th Ed). Elsevier, SUA. Rodrigues, L., Banat, I.M., Teixeira, J., & Oliveira, R., (2006). Biosurfactants: potential applications in medicine, Journal of Antimicrobial Chemotherapy, (57)4, 609–618. Lima, G., Ippolito, A., Nigro, F., & Salerno, M. (1997). Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biology and Technology, 10(2), 169-178. López-García, B., Veyrat, A., Pérez Payá, E., González Candelas, L., & Marcos, J.F., (2003). Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. International Journal of Food Microbiology, 89(2): 163–170. Love, K. R., Dalvie, N. C., & Love, J. C. (2018). The yeast stands alone: the future of protein biologic production. Current opinion in biotechnology, 53, 50-58. Mattanovich, D., Sauer, M., Gasser, B., (2014). Yeast biotechnology: Teaching the old dog new tricks. Microbial Cell Factories, 13(1):1-5. Muccilli, S., Restuccia, C., (2015). Bioprotective Role of Yeasts. Microorganisms. 3(4), 588-611. Passoth, V., Schnürer J. (2003) Non-conventional yeasts in antifungal application. In: de Winde J.H. (eds) Functional Genetics of Industrial Yeasts. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg Perez, M.F., Contreras, L., Garnica, N.M., Fernaandez-Zenoff, M.V., Farõaas, M.E., Sepulveda, M., et al. (2016) Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons. PLoS ONE 11(10): e0165590. Pincus, D. H., Orenga, S., & Chatellier, S. (2007). Yeast identification—past, present, and future methods. Medical mycology, 45(2), 97-121.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Viorica Corbu

Tatiana Vassu

İoana Bala

Stefana Petrut

Ortansa Csutak

Yayımlanma Tarihi 1 Aralık 2018
Yayımlandığı Sayı Yıl 2018Sayı: 3

Kaynak Göster

APA Corbu, V., Vassu, T., Bala, İ., Petrut, S., vd. (2018). Candida vanderwaltii CMGB-ST1 from Peony Petals – Identification and Biotechnological Potential. The Eurasia Proceedings of Science Technology Engineering and Mathematics(3), 1-10.