BibTex RIS Kaynak Göster

Gıda Endüstrisinde Antifriz Proteinlerin Önemi

Yıl 2016, Cilt: 32 Sayı: 1, 81 - 87, 01.02.2016

Öz

Antifriz proteinler (AFP); üç amino asitlik bir peptid zincirinin üçüncü amino asidine kovalant bağlarla bağlanmış bir disakkarit molekülünden oluşan birimlerin (alanin-alanin-threonin-galaktozil-N-asetilgalaktozamin) tekrarlanması ile meydana gelen glikopeptid yapılardır. Buz yüzeyine bağlanabilen, buz kristallerinin büyüyebilmelerini ve yeniden kristallenmelerini kontrol edebilme yeteneğine sahip özel proteinlerdir. Bu özelliklerinden dolayı yapısal ve mekaniksel hasarları önleme etkisi göstererek gıdaların duyusal özelliklerini geliştirmektedirler. Özellikle donmuş gıdalarda yeniden kristallenmenin önlenmesinde etkili olup, çözündürülme işleminde damlama kaybını azaltmakta ve raf ömrünü uzatmaktadırlar. Ancak üretim maliyetlerinin yüksek olması ve elde edilmelerinin zor olmasından dolayı aktif olarak ticari uygulamaya henüz geçilememiştir. Bu derlemede gıda endüstrisi için bu kadar fonksiyonel özelliklere sahip olan bu özel proteinlerin geliştirilmesi ve çeşitli tekniklerle uygulama alanlarının yaygınlaştırılmasının önemi vurgulanmıştır.

Kaynakça

  • Blond, G., Le Meste, M., Principles of frozen storage. Y.E. Hui, P. Cornillon, I.G. Legaretta, M.H. Lim, K.D. Murrell, W., Nip (Eds.), Handbook of Frozen Foods, Marcel Dekker, New York, pp. 30, 2004.
  • Matsumura, K., Hyon, S.H., Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties, Biomaterials, 30 (27): 4842-4849, 2009.
  • Zhang, C., Zhang, H., Wang, L., Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough, Food Research International, 40: 763-769, 2007.
  • Qiu, L., Mao, X., Hou, F., Ma, J., A novel function – Thermal protective properties of an antifreeze protein from the summer desert beetle Microdera punctipennis, Cryobiology, 66 (1): 60-68, 2013.
  • Strom, C.S., Liu, X.Y., Jia, Z., Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism, Journal of the American Chemical Society, 127: 428-440, 2005.
  • Scotter, A.J., Marshall, C.B., Graham, L.A., Gilbert, J.A., Garnham, C.P., Davies P.L., The basis for hyperactivity of antifreeze proteins, Cryobiology, 53: 229–239, 2006.
  • Robles, V., Barbosa, V., Herráez, M.P., Martínez-Páramo, S., Cancela, M.L., The antifreeze protein type I (AFP I) increases seabream (Sparus aurata) embryos tolerance to low temperatures, Theriogenology, 68: 28-289, 2007.
  • Wathen, B., Jia, Z., Controlling the freezing process with antifreeze proteins, D. Sun (Ed.), Emerging Technologies for Food Processing, Elsevier, London, pp. 653-674, 2005.
  • Zhang, C., Zhang, H., Wang, L., Guo, X., Effect of carrot (Daucus carota) antifreeze proteins on texture properties of frozen dough and volatile compounds of crumb, Lebensmittel-Wissenshaft und Technologie, 41: 1029-1036, 2008.
  • Cruz, R.M.S., Viera, M.C.V., Silva, C.L.M., The response of watercress (Nasturtium officinale) to vacuum impregnation: Effect of an antifreeze protein type I, Journal of Food Engineering, 95: 339-345, 2009.
  • Jarząbek, M. Pukacki, P.M., Nuc, K., Cold-regulated proteins with potent antifreeze and cryoprotective activities in spruces (Picea spp.), Cryobiology, http://dx.doi.org/10.1016/j.cryobiol.2009.01.007, 2009
  • Bayer-Giraldi, M., Weikusat, I., Besir, H., Dieckmann, G., Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice, Cryobiology, 63, 210-219, 2011.
  • Tsvetkova, N.M., Phillips, B.L., Krishnan, V.V., Feeney, R.E., Fink,W.H., Dynamics of Antifreeze Glycoproteins in the Presence of Ice, Biophysical Journal, 82: 464–473, 2002.
  • Amornwittawat, N., Wang, S., John, G., Duman, J.G., Wen, X., Polycarboxylates enhance beetle antifreeze protein activity, Biochimica et Biophysica Acta, 1784: 1942–1948, 2008.
  • Yang, C., Sharp, K.A., The mechanism of the type III antifreeze protein action: a computational study, Biophysical Chemistry, 109 (1): 137-148, 2004.
  • Tomczak, M.M., Christopher B. Marshall, C.B., Gilbert, J.A. Davie, P.L., A facile method for determining ice recrystallization inhibition by antifreeze proteins, Biochemical and Biophysical Research Communications, 311: 1041–1046, 2003.
  • Pertaya, N., Marshall, C.B., DiPrinzio, C.L., Wilen L., Thomson, E.S., Wettlaufer, J.S., Davies, P.L., Braslavsky, I., Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces, Biophysical Journal, 92 (10): 3663-3673, 2007.
  • Anonim, Antifriz proteinler ve gıdalarda kullanım potansiyelleri www.gidadernegi.org/TR/Genel/dg.ashx?DIL=1...TURHAN+S (Erişim Tarihi: 21. 01. 2015).
  • Griffith, M., Ewart K.V., Antifreeze proteins and their potential use in frozen foods, Biotechnology Advances, 13: 375-402, 1995.
  • Chen, G., Jia, Z., Ice-binding surface of fish type III antifreeze, Biophysical Journal, 77: 1602-1608, 1999.
  • Breton, G., Danyluk, J., Ouellet, F., Sarhan, F., Biotechnological applications of plant freezing associated proteins, Biotechnology Annual Reviews, 6: 59–101, 2000.
  • Kaiser, J., New prospects for putting organs on ice, Science, 295: 1015, 2002.
  • Garcia-Arribas, O., Mateo, R. Tomczak, M.M. Davies, P.L. Mateu, M.G., Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges, Protein Science, 16: 227–238, 2007.
  • Kundu, S., Roy, D., Temperature-induced unfolding pathway of a type III antifreeze protein: Insight from molecular dynamics simulation, Journal of Molecular Graphics and Modelling, 27: 88-94, 2008.
  • Crevel, R.W.R., Fedyk, J.K., Supurgeon, M.J., Antifreeze proteins: characteristics, occurrence and human exposure, Food and Chemical Toxicology, 40(7): 899-903. 2002.
  • Mao, X., Liu Z, Maa, J., Pang H., Zhang, F., Characterization of a novel b-helix antifreeze protein from the desert beetle Anatolica polita, Cryobiology, 62: 91–99, 2011.
  • Lioua, Y.C., Daley, M.E., Graham, L.A., Kay, C.M., Walker, V.K., Sykes, B.D., Davies, P. L., Folding and Structural Characterization of Highly Disulfide-Bonded Beetle Antifreeze Protein Produced in Bacteria, Protein Expression and Purification, 19 (1): 148-157, 2000.
  • De Vries, A.L., Wohlschlag D.E., Freezing resistance in some Antarctic fishes. Science, 163: 1074–1075, 1969.
  • Fletcher, G.L., Hew, C.L., Davies, P.L., Antifreeze proteins of teleost fishes, Annual Review of Physiology, 63: 359-390, 2001.
  • Duman, J.G., Purification and characterization of a thermal hysteresis protein from plant, bittersweet nightshade Solanum dulcamara, Biochimica et Biophysica Acta, 1206: 129-135, 1994.
  • Hon, W.C., Griffith, M., Chong, P., Yang, D.S.C., Extraction and isolation of antifreeze proteins from winter rye leaves, Plant Physiology, 104: 971-980, 1994.
  • Hon, W., Griffith, M., Mlynarz, Andrzej., Kwok, Y., Yang, S.C., Antifreeze proteins in winter rye are similar to pathogenesis-related proteins, Plant Physiology,109: 879-889, 1995.
  • Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M., Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica), Physiologia Plantarum, 105 (4): 600-608, 1999.
  • Smallwood, M., Worrall, D., Byass, L., Elias, E., Ashford, D., Doucet, C.J., Holt, C., Telfor, J., Lillford, P., Bowles, D.J., Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota), Biochemical Journal, 340: 385–391, 1999.
  • Worrall, D., Byass, L., Elias, E., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P., Telfor, J., Holt, C., Bowles, D.J., A Carrot Leucine-Rich-Repeat Protein That Inhibits Ice Recrystallization, Science, 282: 115-117, 1998.
  • Chun, J.U. Yu, X.M., Griffith, M., Genetic studies of antifreeze proteins and their correlation with winter survival in wheat, Euphytica, 102 (2): 219-226, 1998.
  • Dave, R.S., Mitra, R.K., A low temperature induced apoplastic protein isolated from Arachis hypogaea, Phytochemistry, 49: 2207–2213, 1998.
  • Sabala, I. Egertsdotter, U. Fircks, H.V., Arnold, S.V., Abscisic acid-induced secretion of an antifreeze-like protein in embryogenic cell lines of Picea abies, Journal of Plant Physiology, 149: 163–170, 1996.
  • Lu, C.F., Jian, L.C., Kuang, T.Y., Secretory antifreeze proteins produced in suspension culture cells of Rhodiola algida var. tangutica during cold acclimation, Progress in Biochemistry and Biophysics, 27: 555–559, 2000.
  • Pudney, P.D.A., Buckley, S.L., Sidebottom, C.M., Twigg, S.N., Sevilla, M.P., Holt, C.B., Roper, D., Telford, J.H., McArthur, A.J., Lillford P.J., The physico-chemical characterization of boiling stable antifreeze protein from a perennial grass (Lolium perenne), Archives of Biochemistry and Biophysics, 410: 238–245, 2003.
  • Cai, Y., Liua, S., Liaoa, X., Ding, Y., Sun, J., Zhang, D., Purification and partial characterization of antifreeze proteins from leaves of Ligustrum lucidum Ait, Food and Bioproducts Processing, 8 9: 98–102, 2011.
  • Yeh, Y., Feeney, R.E., Antifreeze Proteins: Structures and Mechanisms of Function, Chemical Reviews, 96 (2): 601–618, 1966.
  • Harding, M.M., Ward, L.G., Hayme, A. D. J., Type I ‘antifreeze’ proteins Structure–activity studies and mechanisms of ice growth inhibition, European Journal of Biochemistry, 264 (3): 653-665, 1999.
  • Nguyen, D.H., Colvin, M.E., Yeh, Y., Feeney, R.E., Fink, W.H., The Dynamics, Structure, and Conformational Free Energy of Proline-Containing Antifreeze Glycoprotein, Biophysical Journal, 82 (6): 2892-2905, 2002.
  • Clarke, A., Johnston, N.M., Antarctic marine benthic diversity, Oceanography and Marine Biology: An Annual Review, 41: 47–114, 2003.
  • Aşçı, A., Göçer, E.M.Ç., Küçükçetin, A., Antifiriz Proteinler ve Gıda Teknolojisinde Kullanımı, Akademik Gıda, 2011.
  • DeVries, A.L., Komatsu, S.K., Feeney, R.E., Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. Journal of Biological Chemistry, 245 (11): 2901-2908, 1970.
  • Raymond, J.A., Lin, Y., DeVries, A.L., Glycoprotein and protein antifreezes in two Alaskan fishes. Journal of Experimental Zoology, 193 (1): 125-130, 1975.
  • Van Voorhies, W.V., Raymond, J.A., DeVries, A.L., Glycoproteins as biological antifreeze agents in the cod, Gadus ogac (Richardson), Physiological Zoology, 347-353, 1978.
  • Hassas-Roudsari, M., Goff, H.D., Ice structuring proteins from plants: Mechanism of action and food application, Food Research International, 46 (1): 425-436, 2012.
  • Antson, A.A., Smith, D.J., Roper, D.I., Lewis, S., Caves, L.S., Verma, C.S., Buckley, S.L., Lillford, P.J., Hubbard, R.E., Understanding the mechanism of ice binding by type III antifreeze proteins. Journal of Molecular Biology, 305 (4): 875-889, 2001.
  • Harding, M.M., Erberg, P.I., Haymet, A.D.J., Antifreeze glycoproteins from polar fish, European Journal of Biochemistry, 270: 1381–1392, 2003.
  • Tachibana, Y., Fletcher, G.L., Fujitani, N., Tsuda, S., Monde, K., Nishimura, S.I., Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity, Angewandte Chemie, 116 (7): 874-880, 2004.
  • Graether, S.P., Sykes, B.D., Cold survival in freeze‐intolerant insects, European Journal of Biochemistry, 271 (16): 3285-3296, 2004.
  • Clarke, C.J., Buckley, S.L., Lindner, N., Ice structuring proteins-A new name for antifreeze proteins, CryoLetters, 23 (2): 89–92, 2002.
  • Regand, A., Goff, H.D., Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass, Journal of Dairy Science, 89 (1): 49-57, 2006.
  • Ewart, K.V., Lin, Q., Hew, C.L., Structure, function and evolution of antifreeze proteins, Cellular and Molecular Life Sciences, 55: 271-283, 1999.
  • Bektaş, G.I., Altıntaş, A., Antifreeze proteins. Journal of Etlik Veterinary Microbiology, Turkey, 2007.
  • Davies, P.L., Sykes, B.D., Antifreeze proteins, Current Opinion in Structural Biology, 7 (6): 828–834, 1997.
  • Pertaya, N., Marshall, C.B., DiPrinzio, C.L., Wilen, L., Thomson, E.S., Wettlaufer, J. S., Davies, P.L., Thomson, E.S., Braslavsky, I., Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces, Biophysical journal, 92 (10): 3663-3673, 2007.
  • Deng, G., Andrews, D.W., Laursen, R.A., Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis, FEBS letters, 402 (1): 17-20, 1997.
  • Fletcher, G.L., Goddard, S.V., Yalın,G,W., Antifreeze proteins and their genes: From basic research to business opportunity, Chemtech, 29 (6): 17-28, 1999.
  • Pham, L., Dahiya, R., Rubinsky, B., An in Vivo Study of Antifreeze Protein Adjuvant Cryosurgery, Cryobiology, 38 (2): 169-175, 1999.
  • Amir, G., Horowitz, L., Rubinsky, B., Yousif, J.L., Lavee, J., Smolinsky, A.K., Prolonged 24-hour subzero preservation of heterotopically transplanted rat hearts using antifreeze proteins derived from arctic fish, The Annals of Thoracic Surgery, 77 (5): 1648-1655, 2004.
  • Desjardins, M., Le François, N.R., Fletcher, G.L., Blier, P.U., High antifreeze protein levels in wolffish (Anarhichas lupus) make them an ideal candidate for culture in cold, potentially ice laden waters, Aquaculture, 272 (1): 667-674, 2007.
  • Rubinsky, B., Arav, A., Mattioli, M., DeVries, A.L., The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures, Biochemical and Biophysical Research Communications, 173: 1369–1374, 1990.
  • Chao, H., Davies, P.L., Carpenter, J.F., Effects of antifreeze proteins on red blood cell survival during cryopreservation, Journal of Experimental Biology, 199 (9): 2071-2076, 1996.
  • Muldrew, K., Rewcastle, J., Donnelly, B.J., Saliken, J.C., Liang, S., Goldie, S., Olson, M., Baissalov, R., Sandison, G., Flounder antifreeze peptides increase the efficacy of cryosurgery, Cryobiology, 42 (3): 182-189, 2001.
  • Soltys, K.A., Batta, A.K., Koneru, B., Successful nonfreezing, subzero preservation of rat liver with 2, 3-butanediol and type I antifreeze protein, Journal of Surgical Research, 96 (1): 30-34, 2001.
  • Karanova, M.V., Pronina, N.D., Tsvetkova, L.I., The effect of antifreeze glycoproteins on survival of fish spermatozoa under the conditions of long-term storage at 4 0C, Biology Bulletin of the Russian Academy of Sciences, 29 (1): 75-79, 2002.
  • Amir, G., Rubinsky, B., Kassif, Y., Horowitz, L., Smolinsky, A.K., Lavee, J., Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins -an electron microscopy study, European Journal of Cardio Thoracic Surgery, 24 (2): 292-297, 2003.
  • Egolf, P.W., Kauffeld, M., From physical properties of ice slurries to industrial ice slurry applications, International Journal of Refrigeration, 28 (1): 4-12, 2005.
  • Inada, T., Modak, P.R. Growth control of ice crystals by poly (vinyl alcohol) and antifreeze protein in ice slurries, Chemical Engineering Science, 61 (10): 3149-3158, 2006.
  • Tyshenko, M.G., d’Anjou, M., Davies, P.L., Daugulis, A.J., Walker, V.K., Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast, Protein Expression and Purification,47 (1): 152-161, 2006.
  • Can, Ö., Holland, N.B., Modified Langmuir isotherm for a two-domain adsorbate: Derivation and application to antifreeze proteins, Journal of Colloid and Interface Science, 329 (1): 24-30, 2009.
  • Li, B., Sun, D.W., Novel methods for rapid freezing and thawing of foods -a review, Journal of Food Engineering, 54 (3): 175-182, 2002.
  • IFAM, IFAM Jahresbericht, Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung Bremen, 2006/2007.
  • Bayer-Giraldi, M., Weikusat, I., Besir, H., Dieckmann, G., Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice, Cryobiology, 63 (3): 210-219, 2011.
  • Gordienko, R., Ohno, H., Singh, V.K., Jia, Z., Ripmeester, J.A., Walker, V.K., Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates, PloS one, 5 (2): 8953, 2010.
  • Arav, A., Rubinsky, B., Fletcher, G., & Seren, E. (1993). Cryogenic protection of oocytes with antifreeze proteins. Molecular Reproduction and Development, 36 (4): 488-493.
  • Payne, S.R., Oliver, J.E., Upreti, G.C., Effect of Antifreeze Proteins on the Motility of Ram Spermatozoa in Cryobiology, 31: 180–184, 1996.
  • Koushafar, H., Pham, L., Lee, C., Rubinsky, B., Chemical adjuvant cryosurgery with antifreeze proteins, Journal of Surgical Oncology, 66 (2): 114-121, 1997.
  • Payne, S.R., Sandford, D., Harris, A., Young, O.A., The effects of antifreeze proteins on chilled and frozen meats, Meat Science, 37 (1994): 429–438, 1994.
  • Payne, S.R., Young, O.A., Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality, Meat Science, 41: 147–155, 1995.
  • Cutler, A.J., Saleem, M., Kendall, E., Gusta, L.V., Georges, F., Fletcher, G.L., Winter flounder antifreeze protein improves the cold hardiness of plant tissues, Journal of Plant Physiology, 135: 351–354, 1989.
  • Atıcı, Ö., Nalbantoǧlu, B., Antifreeze proteins in higher plants, Phytochemistry, 64 (7): 1187-1196, 2003.
  • Martínez-Páramo, S., Barbosa, V., Pérez-Cerezales, S., Robles, V., Herraez, M.P., Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos, Cryobiology, 58 (2): 128-133, 2009.
  • Hawes, T.C., Marshall, C.J., Wharton, D.A., A 9kDa antifreeze protein from the Antarctic springtail, Gomphiocephalus hodgsoni. Cryobiology, 69 (1): 181-183, 2014.
  • Ding, X., Zhang, H., Wang, L., Qian, H., Qi, X., Xiao, J., Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles, Food Hydrocolloids, In Press: doi:10.1016/j.foodhyd.2014.12.025, 2014.

The Important of Antifreeze Proteins’s in Food Industry

Yıl 2016, Cilt: 32 Sayı: 1, 81 - 87, 01.02.2016

Öz

Antifreeze proteins (AFP) are glycopeptide structures which is occured by repeated disaccharide molecules linked with covalent bonds to three amino acids with peptide chain the third amino acid. Bindings structural of ice, growth of the ice crystals and ability of controlled re-crystalization are a special proteins. By showing prevent the effect of structural and mechanical damage is improved sensory properties of foods because of this speciality. Especially, it is expanded shelf-life and reduced drip loss as process of thawing in frozen foods. However, it hasn’t apply as active practise of commercially due to difficult obtain and higher of production cost, yet. In this review this special protein to develop which is have so much functional properties for food industry and promote the application fields with various techniques are emphasized.

Kaynakça

  • Blond, G., Le Meste, M., Principles of frozen storage. Y.E. Hui, P. Cornillon, I.G. Legaretta, M.H. Lim, K.D. Murrell, W., Nip (Eds.), Handbook of Frozen Foods, Marcel Dekker, New York, pp. 30, 2004.
  • Matsumura, K., Hyon, S.H., Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties, Biomaterials, 30 (27): 4842-4849, 2009.
  • Zhang, C., Zhang, H., Wang, L., Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough, Food Research International, 40: 763-769, 2007.
  • Qiu, L., Mao, X., Hou, F., Ma, J., A novel function – Thermal protective properties of an antifreeze protein from the summer desert beetle Microdera punctipennis, Cryobiology, 66 (1): 60-68, 2013.
  • Strom, C.S., Liu, X.Y., Jia, Z., Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism, Journal of the American Chemical Society, 127: 428-440, 2005.
  • Scotter, A.J., Marshall, C.B., Graham, L.A., Gilbert, J.A., Garnham, C.P., Davies P.L., The basis for hyperactivity of antifreeze proteins, Cryobiology, 53: 229–239, 2006.
  • Robles, V., Barbosa, V., Herráez, M.P., Martínez-Páramo, S., Cancela, M.L., The antifreeze protein type I (AFP I) increases seabream (Sparus aurata) embryos tolerance to low temperatures, Theriogenology, 68: 28-289, 2007.
  • Wathen, B., Jia, Z., Controlling the freezing process with antifreeze proteins, D. Sun (Ed.), Emerging Technologies for Food Processing, Elsevier, London, pp. 653-674, 2005.
  • Zhang, C., Zhang, H., Wang, L., Guo, X., Effect of carrot (Daucus carota) antifreeze proteins on texture properties of frozen dough and volatile compounds of crumb, Lebensmittel-Wissenshaft und Technologie, 41: 1029-1036, 2008.
  • Cruz, R.M.S., Viera, M.C.V., Silva, C.L.M., The response of watercress (Nasturtium officinale) to vacuum impregnation: Effect of an antifreeze protein type I, Journal of Food Engineering, 95: 339-345, 2009.
  • Jarząbek, M. Pukacki, P.M., Nuc, K., Cold-regulated proteins with potent antifreeze and cryoprotective activities in spruces (Picea spp.), Cryobiology, http://dx.doi.org/10.1016/j.cryobiol.2009.01.007, 2009
  • Bayer-Giraldi, M., Weikusat, I., Besir, H., Dieckmann, G., Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice, Cryobiology, 63, 210-219, 2011.
  • Tsvetkova, N.M., Phillips, B.L., Krishnan, V.V., Feeney, R.E., Fink,W.H., Dynamics of Antifreeze Glycoproteins in the Presence of Ice, Biophysical Journal, 82: 464–473, 2002.
  • Amornwittawat, N., Wang, S., John, G., Duman, J.G., Wen, X., Polycarboxylates enhance beetle antifreeze protein activity, Biochimica et Biophysica Acta, 1784: 1942–1948, 2008.
  • Yang, C., Sharp, K.A., The mechanism of the type III antifreeze protein action: a computational study, Biophysical Chemistry, 109 (1): 137-148, 2004.
  • Tomczak, M.M., Christopher B. Marshall, C.B., Gilbert, J.A. Davie, P.L., A facile method for determining ice recrystallization inhibition by antifreeze proteins, Biochemical and Biophysical Research Communications, 311: 1041–1046, 2003.
  • Pertaya, N., Marshall, C.B., DiPrinzio, C.L., Wilen L., Thomson, E.S., Wettlaufer, J.S., Davies, P.L., Braslavsky, I., Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces, Biophysical Journal, 92 (10): 3663-3673, 2007.
  • Anonim, Antifriz proteinler ve gıdalarda kullanım potansiyelleri www.gidadernegi.org/TR/Genel/dg.ashx?DIL=1...TURHAN+S (Erişim Tarihi: 21. 01. 2015).
  • Griffith, M., Ewart K.V., Antifreeze proteins and their potential use in frozen foods, Biotechnology Advances, 13: 375-402, 1995.
  • Chen, G., Jia, Z., Ice-binding surface of fish type III antifreeze, Biophysical Journal, 77: 1602-1608, 1999.
  • Breton, G., Danyluk, J., Ouellet, F., Sarhan, F., Biotechnological applications of plant freezing associated proteins, Biotechnology Annual Reviews, 6: 59–101, 2000.
  • Kaiser, J., New prospects for putting organs on ice, Science, 295: 1015, 2002.
  • Garcia-Arribas, O., Mateo, R. Tomczak, M.M. Davies, P.L. Mateu, M.G., Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges, Protein Science, 16: 227–238, 2007.
  • Kundu, S., Roy, D., Temperature-induced unfolding pathway of a type III antifreeze protein: Insight from molecular dynamics simulation, Journal of Molecular Graphics and Modelling, 27: 88-94, 2008.
  • Crevel, R.W.R., Fedyk, J.K., Supurgeon, M.J., Antifreeze proteins: characteristics, occurrence and human exposure, Food and Chemical Toxicology, 40(7): 899-903. 2002.
  • Mao, X., Liu Z, Maa, J., Pang H., Zhang, F., Characterization of a novel b-helix antifreeze protein from the desert beetle Anatolica polita, Cryobiology, 62: 91–99, 2011.
  • Lioua, Y.C., Daley, M.E., Graham, L.A., Kay, C.M., Walker, V.K., Sykes, B.D., Davies, P. L., Folding and Structural Characterization of Highly Disulfide-Bonded Beetle Antifreeze Protein Produced in Bacteria, Protein Expression and Purification, 19 (1): 148-157, 2000.
  • De Vries, A.L., Wohlschlag D.E., Freezing resistance in some Antarctic fishes. Science, 163: 1074–1075, 1969.
  • Fletcher, G.L., Hew, C.L., Davies, P.L., Antifreeze proteins of teleost fishes, Annual Review of Physiology, 63: 359-390, 2001.
  • Duman, J.G., Purification and characterization of a thermal hysteresis protein from plant, bittersweet nightshade Solanum dulcamara, Biochimica et Biophysica Acta, 1206: 129-135, 1994.
  • Hon, W.C., Griffith, M., Chong, P., Yang, D.S.C., Extraction and isolation of antifreeze proteins from winter rye leaves, Plant Physiology, 104: 971-980, 1994.
  • Hon, W., Griffith, M., Mlynarz, Andrzej., Kwok, Y., Yang, S.C., Antifreeze proteins in winter rye are similar to pathogenesis-related proteins, Plant Physiology,109: 879-889, 1995.
  • Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M., Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica), Physiologia Plantarum, 105 (4): 600-608, 1999.
  • Smallwood, M., Worrall, D., Byass, L., Elias, E., Ashford, D., Doucet, C.J., Holt, C., Telfor, J., Lillford, P., Bowles, D.J., Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota), Biochemical Journal, 340: 385–391, 1999.
  • Worrall, D., Byass, L., Elias, E., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P., Telfor, J., Holt, C., Bowles, D.J., A Carrot Leucine-Rich-Repeat Protein That Inhibits Ice Recrystallization, Science, 282: 115-117, 1998.
  • Chun, J.U. Yu, X.M., Griffith, M., Genetic studies of antifreeze proteins and their correlation with winter survival in wheat, Euphytica, 102 (2): 219-226, 1998.
  • Dave, R.S., Mitra, R.K., A low temperature induced apoplastic protein isolated from Arachis hypogaea, Phytochemistry, 49: 2207–2213, 1998.
  • Sabala, I. Egertsdotter, U. Fircks, H.V., Arnold, S.V., Abscisic acid-induced secretion of an antifreeze-like protein in embryogenic cell lines of Picea abies, Journal of Plant Physiology, 149: 163–170, 1996.
  • Lu, C.F., Jian, L.C., Kuang, T.Y., Secretory antifreeze proteins produced in suspension culture cells of Rhodiola algida var. tangutica during cold acclimation, Progress in Biochemistry and Biophysics, 27: 555–559, 2000.
  • Pudney, P.D.A., Buckley, S.L., Sidebottom, C.M., Twigg, S.N., Sevilla, M.P., Holt, C.B., Roper, D., Telford, J.H., McArthur, A.J., Lillford P.J., The physico-chemical characterization of boiling stable antifreeze protein from a perennial grass (Lolium perenne), Archives of Biochemistry and Biophysics, 410: 238–245, 2003.
  • Cai, Y., Liua, S., Liaoa, X., Ding, Y., Sun, J., Zhang, D., Purification and partial characterization of antifreeze proteins from leaves of Ligustrum lucidum Ait, Food and Bioproducts Processing, 8 9: 98–102, 2011.
  • Yeh, Y., Feeney, R.E., Antifreeze Proteins: Structures and Mechanisms of Function, Chemical Reviews, 96 (2): 601–618, 1966.
  • Harding, M.M., Ward, L.G., Hayme, A. D. J., Type I ‘antifreeze’ proteins Structure–activity studies and mechanisms of ice growth inhibition, European Journal of Biochemistry, 264 (3): 653-665, 1999.
  • Nguyen, D.H., Colvin, M.E., Yeh, Y., Feeney, R.E., Fink, W.H., The Dynamics, Structure, and Conformational Free Energy of Proline-Containing Antifreeze Glycoprotein, Biophysical Journal, 82 (6): 2892-2905, 2002.
  • Clarke, A., Johnston, N.M., Antarctic marine benthic diversity, Oceanography and Marine Biology: An Annual Review, 41: 47–114, 2003.
  • Aşçı, A., Göçer, E.M.Ç., Küçükçetin, A., Antifiriz Proteinler ve Gıda Teknolojisinde Kullanımı, Akademik Gıda, 2011.
  • DeVries, A.L., Komatsu, S.K., Feeney, R.E., Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. Journal of Biological Chemistry, 245 (11): 2901-2908, 1970.
  • Raymond, J.A., Lin, Y., DeVries, A.L., Glycoprotein and protein antifreezes in two Alaskan fishes. Journal of Experimental Zoology, 193 (1): 125-130, 1975.
  • Van Voorhies, W.V., Raymond, J.A., DeVries, A.L., Glycoproteins as biological antifreeze agents in the cod, Gadus ogac (Richardson), Physiological Zoology, 347-353, 1978.
  • Hassas-Roudsari, M., Goff, H.D., Ice structuring proteins from plants: Mechanism of action and food application, Food Research International, 46 (1): 425-436, 2012.
  • Antson, A.A., Smith, D.J., Roper, D.I., Lewis, S., Caves, L.S., Verma, C.S., Buckley, S.L., Lillford, P.J., Hubbard, R.E., Understanding the mechanism of ice binding by type III antifreeze proteins. Journal of Molecular Biology, 305 (4): 875-889, 2001.
  • Harding, M.M., Erberg, P.I., Haymet, A.D.J., Antifreeze glycoproteins from polar fish, European Journal of Biochemistry, 270: 1381–1392, 2003.
  • Tachibana, Y., Fletcher, G.L., Fujitani, N., Tsuda, S., Monde, K., Nishimura, S.I., Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity, Angewandte Chemie, 116 (7): 874-880, 2004.
  • Graether, S.P., Sykes, B.D., Cold survival in freeze‐intolerant insects, European Journal of Biochemistry, 271 (16): 3285-3296, 2004.
  • Clarke, C.J., Buckley, S.L., Lindner, N., Ice structuring proteins-A new name for antifreeze proteins, CryoLetters, 23 (2): 89–92, 2002.
  • Regand, A., Goff, H.D., Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass, Journal of Dairy Science, 89 (1): 49-57, 2006.
  • Ewart, K.V., Lin, Q., Hew, C.L., Structure, function and evolution of antifreeze proteins, Cellular and Molecular Life Sciences, 55: 271-283, 1999.
  • Bektaş, G.I., Altıntaş, A., Antifreeze proteins. Journal of Etlik Veterinary Microbiology, Turkey, 2007.
  • Davies, P.L., Sykes, B.D., Antifreeze proteins, Current Opinion in Structural Biology, 7 (6): 828–834, 1997.
  • Pertaya, N., Marshall, C.B., DiPrinzio, C.L., Wilen, L., Thomson, E.S., Wettlaufer, J. S., Davies, P.L., Thomson, E.S., Braslavsky, I., Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces, Biophysical journal, 92 (10): 3663-3673, 2007.
  • Deng, G., Andrews, D.W., Laursen, R.A., Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis, FEBS letters, 402 (1): 17-20, 1997.
  • Fletcher, G.L., Goddard, S.V., Yalın,G,W., Antifreeze proteins and their genes: From basic research to business opportunity, Chemtech, 29 (6): 17-28, 1999.
  • Pham, L., Dahiya, R., Rubinsky, B., An in Vivo Study of Antifreeze Protein Adjuvant Cryosurgery, Cryobiology, 38 (2): 169-175, 1999.
  • Amir, G., Horowitz, L., Rubinsky, B., Yousif, J.L., Lavee, J., Smolinsky, A.K., Prolonged 24-hour subzero preservation of heterotopically transplanted rat hearts using antifreeze proteins derived from arctic fish, The Annals of Thoracic Surgery, 77 (5): 1648-1655, 2004.
  • Desjardins, M., Le François, N.R., Fletcher, G.L., Blier, P.U., High antifreeze protein levels in wolffish (Anarhichas lupus) make them an ideal candidate for culture in cold, potentially ice laden waters, Aquaculture, 272 (1): 667-674, 2007.
  • Rubinsky, B., Arav, A., Mattioli, M., DeVries, A.L., The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures, Biochemical and Biophysical Research Communications, 173: 1369–1374, 1990.
  • Chao, H., Davies, P.L., Carpenter, J.F., Effects of antifreeze proteins on red blood cell survival during cryopreservation, Journal of Experimental Biology, 199 (9): 2071-2076, 1996.
  • Muldrew, K., Rewcastle, J., Donnelly, B.J., Saliken, J.C., Liang, S., Goldie, S., Olson, M., Baissalov, R., Sandison, G., Flounder antifreeze peptides increase the efficacy of cryosurgery, Cryobiology, 42 (3): 182-189, 2001.
  • Soltys, K.A., Batta, A.K., Koneru, B., Successful nonfreezing, subzero preservation of rat liver with 2, 3-butanediol and type I antifreeze protein, Journal of Surgical Research, 96 (1): 30-34, 2001.
  • Karanova, M.V., Pronina, N.D., Tsvetkova, L.I., The effect of antifreeze glycoproteins on survival of fish spermatozoa under the conditions of long-term storage at 4 0C, Biology Bulletin of the Russian Academy of Sciences, 29 (1): 75-79, 2002.
  • Amir, G., Rubinsky, B., Kassif, Y., Horowitz, L., Smolinsky, A.K., Lavee, J., Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins -an electron microscopy study, European Journal of Cardio Thoracic Surgery, 24 (2): 292-297, 2003.
  • Egolf, P.W., Kauffeld, M., From physical properties of ice slurries to industrial ice slurry applications, International Journal of Refrigeration, 28 (1): 4-12, 2005.
  • Inada, T., Modak, P.R. Growth control of ice crystals by poly (vinyl alcohol) and antifreeze protein in ice slurries, Chemical Engineering Science, 61 (10): 3149-3158, 2006.
  • Tyshenko, M.G., d’Anjou, M., Davies, P.L., Daugulis, A.J., Walker, V.K., Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast, Protein Expression and Purification,47 (1): 152-161, 2006.
  • Can, Ö., Holland, N.B., Modified Langmuir isotherm for a two-domain adsorbate: Derivation and application to antifreeze proteins, Journal of Colloid and Interface Science, 329 (1): 24-30, 2009.
  • Li, B., Sun, D.W., Novel methods for rapid freezing and thawing of foods -a review, Journal of Food Engineering, 54 (3): 175-182, 2002.
  • IFAM, IFAM Jahresbericht, Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung Bremen, 2006/2007.
  • Bayer-Giraldi, M., Weikusat, I., Besir, H., Dieckmann, G., Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice, Cryobiology, 63 (3): 210-219, 2011.
  • Gordienko, R., Ohno, H., Singh, V.K., Jia, Z., Ripmeester, J.A., Walker, V.K., Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates, PloS one, 5 (2): 8953, 2010.
  • Arav, A., Rubinsky, B., Fletcher, G., & Seren, E. (1993). Cryogenic protection of oocytes with antifreeze proteins. Molecular Reproduction and Development, 36 (4): 488-493.
  • Payne, S.R., Oliver, J.E., Upreti, G.C., Effect of Antifreeze Proteins on the Motility of Ram Spermatozoa in Cryobiology, 31: 180–184, 1996.
  • Koushafar, H., Pham, L., Lee, C., Rubinsky, B., Chemical adjuvant cryosurgery with antifreeze proteins, Journal of Surgical Oncology, 66 (2): 114-121, 1997.
  • Payne, S.R., Sandford, D., Harris, A., Young, O.A., The effects of antifreeze proteins on chilled and frozen meats, Meat Science, 37 (1994): 429–438, 1994.
  • Payne, S.R., Young, O.A., Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality, Meat Science, 41: 147–155, 1995.
  • Cutler, A.J., Saleem, M., Kendall, E., Gusta, L.V., Georges, F., Fletcher, G.L., Winter flounder antifreeze protein improves the cold hardiness of plant tissues, Journal of Plant Physiology, 135: 351–354, 1989.
  • Atıcı, Ö., Nalbantoǧlu, B., Antifreeze proteins in higher plants, Phytochemistry, 64 (7): 1187-1196, 2003.
  • Martínez-Páramo, S., Barbosa, V., Pérez-Cerezales, S., Robles, V., Herraez, M.P., Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos, Cryobiology, 58 (2): 128-133, 2009.
  • Hawes, T.C., Marshall, C.J., Wharton, D.A., A 9kDa antifreeze protein from the Antarctic springtail, Gomphiocephalus hodgsoni. Cryobiology, 69 (1): 181-183, 2014.
  • Ding, X., Zhang, H., Wang, L., Qian, H., Qi, X., Xiao, J., Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles, Food Hydrocolloids, In Press: doi:10.1016/j.foodhyd.2014.12.025, 2014.
Toplam 89 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA79CM88RR
Bölüm Makaleler
Yazarlar

Filiz Yangılar Bu kişi benim

Pınar Oğuzhan Yıldız Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 32 Sayı: 1

Kaynak Göster

APA Yangılar, F., & Oğuzhan Yıldız, P. (2016). Gıda Endüstrisinde Antifriz Proteinlerin Önemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 32(1), 81-87.
AMA Yangılar F, Oğuzhan Yıldız P. Gıda Endüstrisinde Antifriz Proteinlerin Önemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Şubat 2016;32(1):81-87.
Chicago Yangılar, Filiz, ve Pınar Oğuzhan Yıldız. “Gıda Endüstrisinde Antifriz Proteinlerin Önemi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 32, sy. 1 (Şubat 2016): 81-87.
EndNote Yangılar F, Oğuzhan Yıldız P (01 Şubat 2016) Gıda Endüstrisinde Antifriz Proteinlerin Önemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 32 1 81–87.
IEEE F. Yangılar ve P. Oğuzhan Yıldız, “Gıda Endüstrisinde Antifriz Proteinlerin Önemi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 32, sy. 1, ss. 81–87, 2016.
ISNAD Yangılar, Filiz - Oğuzhan Yıldız, Pınar. “Gıda Endüstrisinde Antifriz Proteinlerin Önemi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 32/1 (Şubat 2016), 81-87.
JAMA Yangılar F, Oğuzhan Yıldız P. Gıda Endüstrisinde Antifriz Proteinlerin Önemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2016;32:81–87.
MLA Yangılar, Filiz ve Pınar Oğuzhan Yıldız. “Gıda Endüstrisinde Antifriz Proteinlerin Önemi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 32, sy. 1, 2016, ss. 81-87.
Vancouver Yangılar F, Oğuzhan Yıldız P. Gıda Endüstrisinde Antifriz Proteinlerin Önemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2016;32(1):81-7.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.