Araştırma Makalesi
BibTex RIS Kaynak Göster

AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ

Yıl 2017, Cilt: 42 Sayı: 1, 67 - 75, 15.02.2017

Öz

Ksilanazlar,  gıda ve yem sektörlerinde çok yaygın olarak
kullanılan enzimler arasındadır.
Bu çalışmada,
farklı
Aureobasidium pullulans suşları ksilanaz üretimleri açısından taranmış ve ilgili suşlar arasında en
yüksek enzim üretimi A. pullulans Y-2311-1 suşu ile elde
edilmiştir.  Söz konusu suş ile ksilanaz
üretimi üzerine etkisi olan parametreler ve bu parametrelerin optimum değerleri
belirlenmiştir. Maksimum enzim üretimi biyoprosesin dördüncü gününde elde
edilmiştir. Enzim üretimi için optimum sıcaklık,  başlangıç ortam pHsı ve karıştırma hızı
sırasıyla 28ºC,  pH 3.0 ve 200 rpm olarak
belirlenmiştir. Enzim üretimi için en uygun azot kaynağı olarak maya ekstraktı
tespit edilmiştir. Optimum koşullarda elde edilen enzim aktivitesi değeri
2527 ± 230 U/ml’dir.

Kaynakça

  • 1. Elgharbi F, Hmida-Sayari A, Zaafouri Y, Bejar S. 2015. Expression of an Aspergillus niger xylanase in yeast: Application inbreadmaking and in vitro digestion. Int J Biol Macromol, 79, 103–109.
  • 2. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanase. FEMS Microbiol Rev, 29, 3–23.
  • 3. Paes G, Berrin JG, Beaugrand J. 2012. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv, 30, 564–592.
  • 4. Bajpai P. 2014. Xylanolytic enzymes, New York, Academic Press.
  • 5. Juturu V, Wu JC. 2012. Microbial xylanases: Engineering, production and industrial applications. Biotechnol Adv, 30, 1219–1277.
  • 6. Dobrev GT, Pishtiyski IG, Stanchev VS, Mircheva R. 2007. Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour Techol, 98, 2671–2678.
  • 7. Kulkarni N, Shendye A, Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev, 23, 411–456.
  • 8. Christov LP, Myburgh J, Van Tonder A, Prior BA. 1997. Hydrolysis of extracted and fiber bound xylan with Aureobasidium pullulans enzymes. J Biotechnol, 55, 21–29.
  • 9. Bailey MJ, Bieley P, Poutanen K. 1992. Interlabratory testing of methods for assay of xylanase activity. J Biotechnol, 23, 257-270.
  • 10. Irfan M, Nadeem M, Syed Q. 2014. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride IR05 in solid-state fermentation. J Radiat Res Appl Sci, 7, 317–326.
  • 11. Leathers TD. 1986. Colour variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl Environ Microbiol, 52, 1026-1030.
  • 12. Ohta K, Moriyama S, Tanaka H, Shige T, Akimoto H. 2001. Purification and characterization of an acidophilic xylanase from Aureobasidium pullulans var. melanigenum and sequence analysis of the encoding gene. J Biosci Bioeng, 92, 262–270.
  • 13. Kumar A, Gupta R, Shrivastava B, Khasa YP, Kuhad RC. 2012. Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. J Mol Catal B: Enzym, 74, 170–177.
  • 14. Knob A, Carmona EC. 2008. Xylanase production by Penicillium sclerotiorum and its characterization. World Appl Sci J, 4, 277- 283.
  • 15. Shah AR, Madamwar D. 2005. Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem, 40, 1763–1771.
  • 16. Adhyaru DN, Bhatt NS, Modi HA. 2014. Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatal Agric Biotechnol, 3, 182–190.
  • 17. Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol, 56, 326–338.
  • 18. Gawande PV, Kamat MY. 1999. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J Appl Microbiol, 87, 511–519.
  • 19. Bajaj BK, Khajuria Y P, Singh VP. 2012. Agricultural residues as potential substrates for production of xylanase from alkali-thermotolerant bacterial isolate. Biocatal Agric Biotechnol, 1, 314–320.
  • 20. Su Y, Zhang X, Hou Z, Zhu X, Guo X, Ling P. 2011. Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology. New Biotechnol, 28, 40–46.
  • 21. Kumar KS, Manimaran A, Permaul K, Singh S. 2009. Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J Biosci Bioeng, 107, 494–498.
  • 22. Haltrich D, Steiner W. 1994. Formation of xylanase by Schizophyllum commune: Effect of medium components. Enzyme Microb Technol, 16, 229–235.
  • 23. Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Silvia Zupancic S. 1996. Production of fungal xylanase. Bioresour Technol, 58, 137–161.
  • 24. Ho HL. 2015. Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SsF). J Food Process Technol, 6: 437, doi:10.4172/2157-7110.1000437
  • 25. Sheng L, Zhu G, Tong Q. 2014. Comparative proteomic analysis of Aureobasidium pullulans in the presence of high and low levels of nitrogen source. J Agric Food Chem, 62, 10529−10534.
  • 26. Bocchini DA, Oliveira OMMF, Gomes E, Da Silva R. 2005. Use of sugarcane bagasse and grass hydrolysates as carbon sources for xylanase production by Bacillus circulans D1 in submerged fermentation. Proces Biochem, 40, 3653–3659.
  • 27. Bakir U, Yavascaoglu S, Guvenc F, Ersayin A. 2001.An endo-β-1,4-xylanase from Rhizopus oryzae: production, partial purification and biochemical characterization. Enzyme Microb Technol, 29, 328–334.
  • 28. Bailey MJ, Viikari L. 1993. Production of xylanases by Aspergillus fumigatus and Aspergillus oryzae on xylan based media. World J Microbiol Biotechnol, 9, 80–84.

DETERMINATION OF THE BIOPROCESS PARAMETERS EFFECTING XYLANASE PRODUCTION BY AUREOBASIDIUM PULLULANS

Yıl 2017, Cilt: 42 Sayı: 1, 67 - 75, 15.02.2017

Öz

Xylanases are
one of the leading enzymes within the enzymes used in food and feed
industries.  In this work, different
Aureobasidium pullulans strains have been screened for their ability to
produce xylanase and A. pullulans Y-2311-1 was found to be
the best strain for xylanase production within the strains tested. Effects of
different cultivation parameters on xylanse production by this strain have further
been evaluated. Maximum enzyme production was obtained at the fourth day of the
bioprocess. The optimum levels of incubation temperature, initial medium pH and
agitation speed were found as 28ºC, pH 3.0 and 200 rpm, respectively.  Under optimized conditions the enzyme
activity reached to
2527 ± 230 U/ml.

Kaynakça

  • 1. Elgharbi F, Hmida-Sayari A, Zaafouri Y, Bejar S. 2015. Expression of an Aspergillus niger xylanase in yeast: Application inbreadmaking and in vitro digestion. Int J Biol Macromol, 79, 103–109.
  • 2. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanase. FEMS Microbiol Rev, 29, 3–23.
  • 3. Paes G, Berrin JG, Beaugrand J. 2012. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv, 30, 564–592.
  • 4. Bajpai P. 2014. Xylanolytic enzymes, New York, Academic Press.
  • 5. Juturu V, Wu JC. 2012. Microbial xylanases: Engineering, production and industrial applications. Biotechnol Adv, 30, 1219–1277.
  • 6. Dobrev GT, Pishtiyski IG, Stanchev VS, Mircheva R. 2007. Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour Techol, 98, 2671–2678.
  • 7. Kulkarni N, Shendye A, Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev, 23, 411–456.
  • 8. Christov LP, Myburgh J, Van Tonder A, Prior BA. 1997. Hydrolysis of extracted and fiber bound xylan with Aureobasidium pullulans enzymes. J Biotechnol, 55, 21–29.
  • 9. Bailey MJ, Bieley P, Poutanen K. 1992. Interlabratory testing of methods for assay of xylanase activity. J Biotechnol, 23, 257-270.
  • 10. Irfan M, Nadeem M, Syed Q. 2014. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride IR05 in solid-state fermentation. J Radiat Res Appl Sci, 7, 317–326.
  • 11. Leathers TD. 1986. Colour variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl Environ Microbiol, 52, 1026-1030.
  • 12. Ohta K, Moriyama S, Tanaka H, Shige T, Akimoto H. 2001. Purification and characterization of an acidophilic xylanase from Aureobasidium pullulans var. melanigenum and sequence analysis of the encoding gene. J Biosci Bioeng, 92, 262–270.
  • 13. Kumar A, Gupta R, Shrivastava B, Khasa YP, Kuhad RC. 2012. Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. J Mol Catal B: Enzym, 74, 170–177.
  • 14. Knob A, Carmona EC. 2008. Xylanase production by Penicillium sclerotiorum and its characterization. World Appl Sci J, 4, 277- 283.
  • 15. Shah AR, Madamwar D. 2005. Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem, 40, 1763–1771.
  • 16. Adhyaru DN, Bhatt NS, Modi HA. 2014. Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatal Agric Biotechnol, 3, 182–190.
  • 17. Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol, 56, 326–338.
  • 18. Gawande PV, Kamat MY. 1999. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J Appl Microbiol, 87, 511–519.
  • 19. Bajaj BK, Khajuria Y P, Singh VP. 2012. Agricultural residues as potential substrates for production of xylanase from alkali-thermotolerant bacterial isolate. Biocatal Agric Biotechnol, 1, 314–320.
  • 20. Su Y, Zhang X, Hou Z, Zhu X, Guo X, Ling P. 2011. Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology. New Biotechnol, 28, 40–46.
  • 21. Kumar KS, Manimaran A, Permaul K, Singh S. 2009. Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J Biosci Bioeng, 107, 494–498.
  • 22. Haltrich D, Steiner W. 1994. Formation of xylanase by Schizophyllum commune: Effect of medium components. Enzyme Microb Technol, 16, 229–235.
  • 23. Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Silvia Zupancic S. 1996. Production of fungal xylanase. Bioresour Technol, 58, 137–161.
  • 24. Ho HL. 2015. Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SsF). J Food Process Technol, 6: 437, doi:10.4172/2157-7110.1000437
  • 25. Sheng L, Zhu G, Tong Q. 2014. Comparative proteomic analysis of Aureobasidium pullulans in the presence of high and low levels of nitrogen source. J Agric Food Chem, 62, 10529−10534.
  • 26. Bocchini DA, Oliveira OMMF, Gomes E, Da Silva R. 2005. Use of sugarcane bagasse and grass hydrolysates as carbon sources for xylanase production by Bacillus circulans D1 in submerged fermentation. Proces Biochem, 40, 3653–3659.
  • 27. Bakir U, Yavascaoglu S, Guvenc F, Ersayin A. 2001.An endo-β-1,4-xylanase from Rhizopus oryzae: production, partial purification and biochemical characterization. Enzyme Microb Technol, 29, 328–334.
  • 28. Bailey MJ, Viikari L. 1993. Production of xylanases by Aspergillus fumigatus and Aspergillus oryzae on xylan based media. World J Microbiol Biotechnol, 9, 80–84.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Sırma Yeğin

Yayımlanma Tarihi 15 Şubat 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 42 Sayı: 1

Kaynak Göster

APA Yeğin, S. (2017). AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ. Gıda, 42(1), 67-75.
AMA Yeğin S. AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ. GIDA. Şubat 2017;42(1):67-75.
Chicago Yeğin, Sırma. “AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ”. Gıda 42, sy. 1 (Şubat 2017): 67-75.
EndNote Yeğin S (01 Şubat 2017) AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ. Gıda 42 1 67–75.
IEEE S. Yeğin, “AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ”, GIDA, c. 42, sy. 1, ss. 67–75, 2017.
ISNAD Yeğin, Sırma. “AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ”. Gıda 42/1 (Şubat 2017), 67-75.
JAMA Yeğin S. AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ. GIDA. 2017;42:67–75.
MLA Yeğin, Sırma. “AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ”. Gıda, c. 42, sy. 1, 2017, ss. 67-75.
Vancouver Yeğin S. AUREOBASIDIUM PULLULANS İLE KSİLANAZ ÜRETİMİNE ETKİ EDEN BİYOPROSES PARAMETRELERİN BELİRLENMESİ. GIDA. 2017;42(1):67-75.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/