BibTex RIS Kaynak Göster

KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM ve TOPLAM YAĞ İÇERİĞİ ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ

Yıl 2015, Cilt: 40 Sayı: 5, 249 - 254, 01.10.2015

Öz

Bu çalışmada, kahverengi (TR 77705) ve sarı (TR 73572) keten tohumlarının (Linum usitatissimum L.) ve5-13 günlük filizlerinin nem ve toplam yağ içeriği ile yağ asidi kompozisyonu incelenmiştir. Kahverengive sarı keten tohumlarının toplam yağ içeriği 5 günlük çimlendirme işlemi ile sırasıyla %68.72 ve 76.61oranında düşmüş olup tohumların nem içerikleri ise sırasıyla 14 ve 17 kat artmıştır. (P<0.05). Kahverengive sarı keten tohumlarının 5 ve 13 günlük filizlerinin toplam yağ içerikleri ise kuru madde bazındasırasıyla 13.23; 10.54% ve 3.20; 3.36% olarak saptanmıştır. Kahverengi ve sarı keten tohumu filizlerininen yüksek doymamış yağ asidi içerikleri sırasıyla %89.80 and 86.20 olarak 5 günlük filizlerde elde edilmişolup α-linolenik asit yüzdeleri de en yüksek oranda 5 günlük filizlerde (sırasıyla %52.58 and 45.15)bulunmuştur. Palmitik asit filizlenme işlemi sırasında önemli düzeyde düşme göstermiş olup en yüksekpalmitik asit içerikleri 11 günlük sarı ve kahverengi keten tohumu filizlerinde sırasıyla %18.96 and16.73 olarak saptanmıştır

Kaynakça

  • Choo WS, Birch J, Dufour, JP. 2007. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J Food Compos Anal, 20: 202-211.
  • Johnsson P, Peerlkampa N, Kamal-Eldina A, Andersson R. E, Anderssona R, Lundgren L N, Åman P. 2002. Polymeric fractions containing phenol glucosides in flaxseed. Food Chem, 76: 207-212.
  • Rudnik E, Szczucinska A, Gwardiak H, Szulc A, Winiarska A. 2001. Comparative studies of oxidative stability of linseed oil. Thermochimica Acta, 370: 135-140.
  • Collins TFX, Sprando, R., Black TN, Olejnik N, Wiesenfeld PW, Babu US, Bryant M, Flynn TJ, Ruggles DI. 2003. Effects of flaxseed and defatted flaxseed meal on reproduction and development in rats. Food Chem Toxicol, 41: 819-834.
  • Bloedon LT. and Szapary OP. 2004. Flaxseed and cardiovascular risk. Nutr Rev. 62: 18-27.
  • Hosseinian F., Muir AD, Westcott ND, Krol ES. 2006. Antioxidant Capacity of Flaxseed Lignans in Two Model Systems. JAOCS, 83 (10): 835-840.
  • Valstal LM, Killkinen A, Mazur W, Nurmi T, Lampi AM, Ovaskainen ML, Korhonen T, Adlercreutz H, Pietinen P. 2003. Phyto-oestrogen database of foods and average intake in Finland. Br J Nutr. 89, Suppl. 1, 31-38.
  • Tan KP, Chen J, WardWE & Thompson LU. 2004. Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during suckling in rats. Exp. Biol. Med. 229: 147-157.
  • Chen J, Thompson LU. 2003. Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro. Breast Cancer Res. Treat, 80: 163-170.
  • Thompson LU. 2003. Flaxseed, Lignans, and Cancer. In S. C. Cunnane, & L. U. Thompson (Eds.), Flaxseed in human nutrition. AOCS Press, 195-222.
  • Mao JJ, Dong JF, & Zhu MY. 2005. Effect of germination conditions on ascorbic acid level and yield of soybean sprout. J Sci Food Agric, 85: 943-947.
  • Khattak AB, Zeb A, Bibi N, Khalil SA, Khattak MA. 2007. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem, 104 (3): 1074-1079.
  • Khattak AB, Zeb A., Khan M, Bibi N, Ihsanullah, Khattak, MS. 2007. Influence of germination techniques on sprout yield, biosynthesis of ascorbic acid and cooking ability, in chickpea (Cicer arietinum L.). Food Chem, 103 (1): 115-120.
  • Pasko P, Barton H, Zagrodzki P, Gorinstein S, Folta M, Zachwieja Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem, 115: 994-998.
  • Badshah A, Zeb A, Sattar A. 1991. Effect of soaking, germination and autoclaving on selected nutrients of rapeseed. Pak J Sci Ind Res, 34: 446-448.
  • Sattar A, Badshah A, Zeb A. 1995. Biosynthesis of ascorbic acid in germinating rapeseed cultivars. Plant Foods Hum Nutr, 47: 63-70.
  • Hahm T S, Park SJ, Lo YM. 2009. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour Technol, 100: 1643-1647.
  • Kim EH, Kim SH, Chung JI, Chi JH, Kim YA, Chung, I. M. 2004. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur Food Res Technol, 222: 201-208. 19. ISTA, 1985. "Flax seed sprouts", International rules for seed testing. Seed Sci Technol.
  • AOAC, 1998. Official Methods of Analysis of the Association of Analytical Chemists, Washington D. C., USA.
  • Lukaszewicz M, Szopa J, Krasowska A. 2004. Susceptibility of lipids from different flax cultivars to peroxidation and its lowering by added antioxidants. Food Chem, 88: 225-231.
  • Wanasundara PKJPD, Wanasundara UN, Shahidi F. 1999. Changes in Flax (Linum usitatissimum L.) Seed lipids during germination. JAOCS, 76: 41-48. 23. Khalil AW, Zeb A, Mahmood F, Tariq S, Khattak AB, Shah H. 2007. Comparision of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT, 40: 937-945.
  • Khattak AB, Zeb A, Bibi N. 2008. Impact of germination time and type of illumination on carotenoid content, protein solubility and in vitro protein digestibility of chickpea (Cicer arietinum L.) sprouts. Food Chem, 109: 797-801.
  • Bibi N, Aurang Z, Amal BK, Mohammad SK. 2008. Effect of germination time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). Am. J. Food Technol, 3: 24-32.
  • Bau HM, Villaume C, Nicolas JP, Méjean L. 1997. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci. Food Agric. 73 (1): 1-9.

The EFFECT of GERMINATION TIME on MOISTURE, TOTAL FAT CONTENT and FATTY ACID COMPOSITION of FLAXSEED (LINUM USITATISSIMUM L.) SPROUTS

Yıl 2015, Cilt: 40 Sayı: 5, 249 - 254, 01.10.2015

Öz

In this study, moisture content, total fat content and fatty acid composition were evaluated in brown(TR 77705) and yellow (TR 73572) flaxseeds (Linum usitatissimum L.) and their sprouts (at 5–13 day).Total fat content of brown and yellow flaxseeds reduced 68.72 and 76.61% after 5 days germinationwhereas, moisture content of seeds significantly increased as 14 and 17 fold respectively (P<0.05). Totalfat in 5-day-old brown and yellow seed sprouts were determined as 13.23 and 10.54% on dry matterrespectively and similarly 3.20 and 3.36% in 13-day-old sprouts. Highest percentage of unsaturatedfatty acid in brown and yellow seed sprouts were determined as 89,80 and 86.20% at 5 days and similarlyα-linolenic acids were calculated as 52.58 and 45.15% respectively. The palmitic acids in noticablyincreased during germination and the highest levels were obtained as 18.96 and 16.73% in yellow andbrown seed sprouts at 11 days respectively

Kaynakça

  • Choo WS, Birch J, Dufour, JP. 2007. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J Food Compos Anal, 20: 202-211.
  • Johnsson P, Peerlkampa N, Kamal-Eldina A, Andersson R. E, Anderssona R, Lundgren L N, Åman P. 2002. Polymeric fractions containing phenol glucosides in flaxseed. Food Chem, 76: 207-212.
  • Rudnik E, Szczucinska A, Gwardiak H, Szulc A, Winiarska A. 2001. Comparative studies of oxidative stability of linseed oil. Thermochimica Acta, 370: 135-140.
  • Collins TFX, Sprando, R., Black TN, Olejnik N, Wiesenfeld PW, Babu US, Bryant M, Flynn TJ, Ruggles DI. 2003. Effects of flaxseed and defatted flaxseed meal on reproduction and development in rats. Food Chem Toxicol, 41: 819-834.
  • Bloedon LT. and Szapary OP. 2004. Flaxseed and cardiovascular risk. Nutr Rev. 62: 18-27.
  • Hosseinian F., Muir AD, Westcott ND, Krol ES. 2006. Antioxidant Capacity of Flaxseed Lignans in Two Model Systems. JAOCS, 83 (10): 835-840.
  • Valstal LM, Killkinen A, Mazur W, Nurmi T, Lampi AM, Ovaskainen ML, Korhonen T, Adlercreutz H, Pietinen P. 2003. Phyto-oestrogen database of foods and average intake in Finland. Br J Nutr. 89, Suppl. 1, 31-38.
  • Tan KP, Chen J, WardWE & Thompson LU. 2004. Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during suckling in rats. Exp. Biol. Med. 229: 147-157.
  • Chen J, Thompson LU. 2003. Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro. Breast Cancer Res. Treat, 80: 163-170.
  • Thompson LU. 2003. Flaxseed, Lignans, and Cancer. In S. C. Cunnane, & L. U. Thompson (Eds.), Flaxseed in human nutrition. AOCS Press, 195-222.
  • Mao JJ, Dong JF, & Zhu MY. 2005. Effect of germination conditions on ascorbic acid level and yield of soybean sprout. J Sci Food Agric, 85: 943-947.
  • Khattak AB, Zeb A, Bibi N, Khalil SA, Khattak MA. 2007. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem, 104 (3): 1074-1079.
  • Khattak AB, Zeb A., Khan M, Bibi N, Ihsanullah, Khattak, MS. 2007. Influence of germination techniques on sprout yield, biosynthesis of ascorbic acid and cooking ability, in chickpea (Cicer arietinum L.). Food Chem, 103 (1): 115-120.
  • Pasko P, Barton H, Zagrodzki P, Gorinstein S, Folta M, Zachwieja Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem, 115: 994-998.
  • Badshah A, Zeb A, Sattar A. 1991. Effect of soaking, germination and autoclaving on selected nutrients of rapeseed. Pak J Sci Ind Res, 34: 446-448.
  • Sattar A, Badshah A, Zeb A. 1995. Biosynthesis of ascorbic acid in germinating rapeseed cultivars. Plant Foods Hum Nutr, 47: 63-70.
  • Hahm T S, Park SJ, Lo YM. 2009. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour Technol, 100: 1643-1647.
  • Kim EH, Kim SH, Chung JI, Chi JH, Kim YA, Chung, I. M. 2004. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur Food Res Technol, 222: 201-208. 19. ISTA, 1985. "Flax seed sprouts", International rules for seed testing. Seed Sci Technol.
  • AOAC, 1998. Official Methods of Analysis of the Association of Analytical Chemists, Washington D. C., USA.
  • Lukaszewicz M, Szopa J, Krasowska A. 2004. Susceptibility of lipids from different flax cultivars to peroxidation and its lowering by added antioxidants. Food Chem, 88: 225-231.
  • Wanasundara PKJPD, Wanasundara UN, Shahidi F. 1999. Changes in Flax (Linum usitatissimum L.) Seed lipids during germination. JAOCS, 76: 41-48. 23. Khalil AW, Zeb A, Mahmood F, Tariq S, Khattak AB, Shah H. 2007. Comparision of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT, 40: 937-945.
  • Khattak AB, Zeb A, Bibi N. 2008. Impact of germination time and type of illumination on carotenoid content, protein solubility and in vitro protein digestibility of chickpea (Cicer arietinum L.) sprouts. Food Chem, 109: 797-801.
  • Bibi N, Aurang Z, Amal BK, Mohammad SK. 2008. Effect of germination time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). Am. J. Food Technol, 3: 24-32.
  • Bau HM, Villaume C, Nicolas JP, Méjean L. 1997. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci. Food Agric. 73 (1): 1-9.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA27YG34ZS
Bölüm Araştırma Makalesi
Yazarlar

Evrim Özkaynak Kanmaz Bu kişi benim

Gülden Ova Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 40 Sayı: 5

Kaynak Göster

APA Kanmaz, E. Ö., & Ova, G. (2015). KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM ve TOPLAM YAĞ İÇERİĞİ ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ. Gıda, 40(5), 249-254.
AMA Kanmaz EÖ, Ova G. KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM ve TOPLAM YAĞ İÇERİĞİ ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ. GIDA. Ekim 2015;40(5):249-254.
Chicago Kanmaz, Evrim Özkaynak, ve Gülden Ova. “KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM Ve TOPLAM YAĞ İÇERİĞİ Ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ”. Gıda 40, sy. 5 (Ekim 2015): 249-54.
EndNote Kanmaz EÖ, Ova G (01 Ekim 2015) KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM ve TOPLAM YAĞ İÇERİĞİ ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ. Gıda 40 5 249–254.
IEEE E. Ö. Kanmaz ve G. Ova, “KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM ve TOPLAM YAĞ İÇERİĞİ ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ”, GIDA, c. 40, sy. 5, ss. 249–254, 2015.
ISNAD Kanmaz, Evrim Özkaynak - Ova, Gülden. “KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM Ve TOPLAM YAĞ İÇERİĞİ Ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ”. Gıda 40/5 (Ekim 2015), 249-254.
JAMA Kanmaz EÖ, Ova G. KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM ve TOPLAM YAĞ İÇERİĞİ ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ. GIDA. 2015;40:249–254.
MLA Kanmaz, Evrim Özkaynak ve Gülden Ova. “KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM Ve TOPLAM YAĞ İÇERİĞİ Ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ”. Gıda, c. 40, sy. 5, 2015, ss. 249-54.
Vancouver Kanmaz EÖ, Ova G. KETEN TOHUMU (LINUM USITATISSIMUM L.) FİLİZLERİNİN NEM ve TOPLAM YAĞ İÇERİĞİ ile YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE ÇİMLENDİRME SÜRESİNİN ETKİSİ. GIDA. 2015;40(5):249-54.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/