Araştırma Makalesi
BibTex RIS Kaynak Göster

Dört Döner Kanatlı Bir Sistemin Hareketli Bir Kara Platformuna Doğru Güdüm ve Denetimi

Yıl 2017, Cilt: 3 Sayı: 2, 1 - 14, 25.08.2017

Öz

Dört döner kanatlı sistemler
(DDKSs), askerî ve sivil alanda çeşitli uygulamalarda kullanılmaktadır.
Belirtilen sistemlerin başarımlarını (performanslarını) yükseltmek için, toplam
kütleleri asgarî düzeyde tutulmalıdır. Öte yandan, menzil gereksinimindeki büyüme,
DDKS’lerin kritik bileşenlerinden olan güç kaynağının kütlesini de
artıracaktır. Ayrıca, hareketli hedef noktası söz konusu olduğunda güç
gereksinimi de fazlalaşacaktır. Bu nedenle, toplam işletim süresinin
kısaltılması ve dolayısıyla güç tüketiminin aşağıya çekilebilmesi adına,
DDKS’lerin hareket planlamasının uygun bir şekilde yapılması önem arz
etmektedir. Bu çalışmada, ele alınan bir DDKS’nin hareketli bir yer platformuna
yönlendirilmesinde uygulanabilecek güdüm esaslı farklı bir hareket planlaması
yaklaşımı önerilmektedir. Belirtilen yöntemde iki farklı güdüm kuralı göz önüne
alınmış olup, bu kurallarla uyumlu olacak şekilde iki kademeli etkin bir
denetim sistemi de tasarlanmıştır. Oluşturulan güdüm ve denetim algoritmasının
başarımı, uygun şekilde kurgulanmış bilgisayar benzetimleri yardımıyla
gösterilmeye çalışılmıştır. Sonuç olarak, doğrusal hedef takibi güdüm kuralının
ele alındığı durumlarda, gövde takibi güdüm kuralının uygulandığı senaryolara
nazaran daha tatminkâr sonuçların elde edildiği gözlenmiştir.

Kaynakça

  • [1] Abbasi, E., Mahjoob, M. J. and Yazdanpanah, R. 2013: Controlling of quadrotor UAV using a fuzzy system for tuning the PID gains in hovering mode. Proceedings of the Advances in Database and Data Mining Conference (ADDM-2013), İstanbul, Turkey.
  • [2] Altuğ, E., Ostrowski, J. P. and Mahony, R. 2002: Control of a quadrotor helicopter using visual feedback. Proceeding of the 2002 IEEE International Conference on Robotics and Automation, Washington DC, USA.
  • [3] Asl, H. J. and Bolandi, H. 2014: Robust vision-based control of an underactuated flying robot tracking a moving target. Transactions of the Institute of Measurement and Control, 36, 3, 411-424.
  • [4] Bouabdallah, S. and Siegwart, R. 2007: Full control of a quadrotor. Proceedings of the Intelligent Robots and Systems Conference-2007 (IROS 2007), San Diego, CA, USA.
  • [5] Bresciani, T. 2008: Modelling, Identification and Control of a Quadrotor Helicopter. MSc Thesis, Lund University, Sweden.
  • [6] Capello, E., Guglieri, G. and Quagliotti, F. 2011: Modeling and simulation of a small quad-rotor UAV.
  • [7] Aerotecnica Missili and Spazio, The Journal of Aerospace Science, Technology and Systems, 89, 21, 90-99.
  • [8] Castellanos, J. F. G., Guzmán, J. J. T., Durand, S., Marchand, N., Muňoz, J. U. A, and Díaz, V. R. G. 2014: Attitude stabilization of a quadrotor by means of event-triggered nonlinear control. Journal of Intelligent Robot Systems, 73, 123-135.
  • [9] Cowling, I. D., Yakimenko, O. A., Whidborne, J. F. and Cooke, A. K. 2007: A prototype of an autonomous controller for a quadrotor UAV. Proceedings of the European Control Conference 2007 (ECC’07), Kos, Greece.
  • [10] Cutler, M. J. 2012: Design and Control of an Autonomous Variable-Pitch Quadrotor Helicopter. MSc Thesis, Massachusetts Institute of Technology, Boston, MA, USA.
  • [11] Dougherty, J., Lee, D. and Lee, T. 2014: Laser-based guidance of a quadrotor UAV for precise landing on an inclined surface. Proceedings of the American Control Conference 2014, Portland, OR, USA.
  • [12] Dydek, Z. T., Annaswamy, A. M. and Lavretsky, E. 2013: Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Transactions on Control Systems Technology, 21, 4, 1400-1406.
  • [13] Ellis, D., Brady, T., Olson, I. and Li, Y. 2013: Autonomous Quadrotor for the 2012 International Aerial Robot Competition. Technical Report, M.S.E. Aerospace Engineering.
  • [14] Erginer, B. and Altuğ, E. 2007: Fuzzy control of a helicopter with four rotors (in Turkish). Proceedings of the Automatic Control Turkish National Committee, Automatic Control National Meeting-2007 (TOK’07), Sabancı University, İstanbul, Turkey.
  • [15] Fernandes, S. I. B. 2011: Guidance and Trajectory Following of an Autonomous Vision-Ozkan / Gazi Mühendislik Bilimleri Dergisi (2017), 3(2): 1-14 PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Academic Publishing 13 Guided Micro Quadrotor. MSc Thesis, Technical University of Lisbon, Lisbon, Portugal.
  • [16] Fisher, M. 2009: Attitude Stabilisation of a Quadrotor Aircraft. Faculty of Engineering and Physical Systems, Central Queensland University, Australia.
  • [17] Fowers, S. G. 2008: Stabilization and Control of a Quad-rotor Micro-UAV Using Vision Sensors. MSc Thesis, Brigham Young University, USA.
  • [18] Ghadiok, V., Goldin, J. and Ren, W. 2012: On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor. Autonomous Robots, 33, 1-2, 41-68.
  • [19] Härkegård, O. 2001: Flight Control Design Using Backstepping. MSc Thesis, Linköping University, Sweden.
  • [20] Hehn, M. and D’Andrea, R. 2011: Quadrocopter trajectory generation and control. Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy.
  • [21]Hérissé, B., Hamel, T., Mahony, R. and Russotto, F. X. 2012: Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Transactions on Robotics, 28, 1, 77-89.
  • [22] Hoffmann, G. M., Huang, H., Waslander, S. L. and Tomlin, C. J. 2007: Quadrotor helicopter flight dynamics and control: theory and experiment. Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, South Carolina, USA.
  • [23] Huo, X., Huo, M. and Karimi, H. R. 2014: Attitude stabilization control of a quadrotor UAV by using backstepping approach. Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2014, 1-9.
  • [24] Kendoul, F. 2012: A Survey of Advances in Guidance, Navigation and Control of Unmanned Rotorcraft Systems. Technical Report, Australian Research Centre for Aerospace Automation (ARCAA), Australia.
  • [25] Kıvrak, A. Ö. 2006: Design of Control Systems for a Quadrotor Flight Vehicle Equipped with Inertial Sensors. MSc Thesis, Atılım University, Turkey.
  • [26] Lee, K. U., Park, J. B. and Choi, Y. H. 2014: Adaptive backstepping hovering control for a quadrotor with unknown parameters. Journal of Institute of Control, Robotics and Systems, 20, 10, 1002-1007.
  • [27] Li, W., Zhang, T. and Kühlenz, K. 2011: A vision-guided autonomous quadrotor in an air-ground multi- robot system. Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China.
  • [28] Liu, H., Bai, Y., Lu, G., Shi, Z. and Zhong, Y. 2014: Robust tracking control of a quadrotor helicopter. Journal of Intelligent Robot Systems, 75, 595-608.
  • [29] Miller, K. 2008: Path Tracking Control for Quadrotor Helicopters. Technical Report.
  • [30] Morel, Y. and Leonessa, A. 2006: Direct adaptive tracking control of quadrotor aerial vehicles. Proceedings of the 2006 Florida Conference on Recent Advances in Robotics (FCRAR 2006), Miami, Florida, USA.
  • [31] Özkan, B. 2016: Guidance and control of a planar robot manipulator used in an assembly line. Transactions of the Institute of Measurement and Control, OnlineFirst Publication, 1-11.
  • [32] Özkan, B. 2005: Dynamic Modeling, Guidance, and Control of Homing Missiles. Ph.D Dissertation, Middle East Technical University, Ankara, Turkey.
  • [33] Richter, C., Bry, A. and Roy, N. 2013: Polynomial trajectory planning for quadrotor flight. Proceedings of the International Conference on Robotics.
  • [34] Rodriguez, H. R., Vega, V. P., Orta, A. S. and Salazar, O. G. 2014: Robust backstepping control based on integral sliding modes for tracking of quadrotors. Journal of Intelligent Robot Systems, 73, 51-66.
  • [35] Stevanovic, S., Kasac, J. and Stepanic, J. 2012: Robust tracking control of a quadrotor helicopter without velocity measurement. Proceedings of the 23rd International DAAAM Symposium, Vienna, Austria. Ozkan / Gazi Mühendislik Bilimleri Dergisi (2017), 3(2): 1-14 PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Academic Publishing 14
  • [36] Tsay, T. S. 2014: Guidance and control laws for quadrotor UAV. WSEAS Transactions on Systems and Control, 9, 1, 606-613.
  • [37] Tsay, T. S. 2012: Model based automatic regulation process for guidance and control of quadrotor UAV. Journal of Aeronautics, Astronautics, and Aviation, 46, 4, 271-279.
  • [38] Voos, H. and Nourghassemi, B. 2009: Nonlinear control of stabilized flight and landing for quadrotor UAVs. Proceedings of the 24th Annual Meeting of the European Institute for Applied Research, IAR’2009, Zielona, Góra, Poland.
  • [39] Wang, W., Ma, H., Xia, M., Weng, L. and Ye, X. 2013: Attitude and altitude controller design for quad- rotor type MAVs. Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2013, 1-9.
  • [40] Xu, R. and Özgüner, Ü. 2008: Sliding mode control of a class of underactuated systems. Automatica, Elsevier, 44, 233-241.
  • [41] Zarchan, P. 1994: Tactical and Strategic Missile Guidance. Vol. 157, Progress in Aeronautics and Astronautics, AIAA, Washington DC, USA, Chapters: 1-3.
  • [42] Zhang, D., Qi, H., Wu, X., Xie, Y. and Xu, J. 2014: The quadrotor dynamic modeling and ındoor target tracking control method. Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2014, 1-9.

Guidance and Control of a Quadrotor towards a Moving Land Platform

Yıl 2017, Cilt: 3 Sayı: 2, 1 - 14, 25.08.2017

Öz

Quadrotors
are utilized in several military and civil applications. To improve the
performance characteristics, their weight is desired to be kept at minimum. However,
the battery which constitutes one of the major components of a quadrotor weighs
more if its range is extended. When a moving destination point is considered as
well, the power requirement becomes larger. Thus, a proper motion planning
comes into the picture as a necessity for the quadrotor to reduce the total
operation time and hence to lower the power consumption. In this study, a novel
guidance-based motion planning scheme is proposed regarding two different
guidance laws towards a moving land platform. Moreover, an effective two-stage
control system is designed in a way compatible with the suggested guidance
laws. The success of the constructed guidance and control algorithm is
demonstrated by means of suitable computer simulations. Eventually, it is
concluded that the linear homing guidance law leads to more satisfactory
results than the other guidance approach utilized in this study, i.e. body
pursuit guidance law.

Kaynakça

  • [1] Abbasi, E., Mahjoob, M. J. and Yazdanpanah, R. 2013: Controlling of quadrotor UAV using a fuzzy system for tuning the PID gains in hovering mode. Proceedings of the Advances in Database and Data Mining Conference (ADDM-2013), İstanbul, Turkey.
  • [2] Altuğ, E., Ostrowski, J. P. and Mahony, R. 2002: Control of a quadrotor helicopter using visual feedback. Proceeding of the 2002 IEEE International Conference on Robotics and Automation, Washington DC, USA.
  • [3] Asl, H. J. and Bolandi, H. 2014: Robust vision-based control of an underactuated flying robot tracking a moving target. Transactions of the Institute of Measurement and Control, 36, 3, 411-424.
  • [4] Bouabdallah, S. and Siegwart, R. 2007: Full control of a quadrotor. Proceedings of the Intelligent Robots and Systems Conference-2007 (IROS 2007), San Diego, CA, USA.
  • [5] Bresciani, T. 2008: Modelling, Identification and Control of a Quadrotor Helicopter. MSc Thesis, Lund University, Sweden.
  • [6] Capello, E., Guglieri, G. and Quagliotti, F. 2011: Modeling and simulation of a small quad-rotor UAV.
  • [7] Aerotecnica Missili and Spazio, The Journal of Aerospace Science, Technology and Systems, 89, 21, 90-99.
  • [8] Castellanos, J. F. G., Guzmán, J. J. T., Durand, S., Marchand, N., Muňoz, J. U. A, and Díaz, V. R. G. 2014: Attitude stabilization of a quadrotor by means of event-triggered nonlinear control. Journal of Intelligent Robot Systems, 73, 123-135.
  • [9] Cowling, I. D., Yakimenko, O. A., Whidborne, J. F. and Cooke, A. K. 2007: A prototype of an autonomous controller for a quadrotor UAV. Proceedings of the European Control Conference 2007 (ECC’07), Kos, Greece.
  • [10] Cutler, M. J. 2012: Design and Control of an Autonomous Variable-Pitch Quadrotor Helicopter. MSc Thesis, Massachusetts Institute of Technology, Boston, MA, USA.
  • [11] Dougherty, J., Lee, D. and Lee, T. 2014: Laser-based guidance of a quadrotor UAV for precise landing on an inclined surface. Proceedings of the American Control Conference 2014, Portland, OR, USA.
  • [12] Dydek, Z. T., Annaswamy, A. M. and Lavretsky, E. 2013: Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Transactions on Control Systems Technology, 21, 4, 1400-1406.
  • [13] Ellis, D., Brady, T., Olson, I. and Li, Y. 2013: Autonomous Quadrotor for the 2012 International Aerial Robot Competition. Technical Report, M.S.E. Aerospace Engineering.
  • [14] Erginer, B. and Altuğ, E. 2007: Fuzzy control of a helicopter with four rotors (in Turkish). Proceedings of the Automatic Control Turkish National Committee, Automatic Control National Meeting-2007 (TOK’07), Sabancı University, İstanbul, Turkey.
  • [15] Fernandes, S. I. B. 2011: Guidance and Trajectory Following of an Autonomous Vision-Ozkan / Gazi Mühendislik Bilimleri Dergisi (2017), 3(2): 1-14 PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Academic Publishing 13 Guided Micro Quadrotor. MSc Thesis, Technical University of Lisbon, Lisbon, Portugal.
  • [16] Fisher, M. 2009: Attitude Stabilisation of a Quadrotor Aircraft. Faculty of Engineering and Physical Systems, Central Queensland University, Australia.
  • [17] Fowers, S. G. 2008: Stabilization and Control of a Quad-rotor Micro-UAV Using Vision Sensors. MSc Thesis, Brigham Young University, USA.
  • [18] Ghadiok, V., Goldin, J. and Ren, W. 2012: On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor. Autonomous Robots, 33, 1-2, 41-68.
  • [19] Härkegård, O. 2001: Flight Control Design Using Backstepping. MSc Thesis, Linköping University, Sweden.
  • [20] Hehn, M. and D’Andrea, R. 2011: Quadrocopter trajectory generation and control. Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy.
  • [21]Hérissé, B., Hamel, T., Mahony, R. and Russotto, F. X. 2012: Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Transactions on Robotics, 28, 1, 77-89.
  • [22] Hoffmann, G. M., Huang, H., Waslander, S. L. and Tomlin, C. J. 2007: Quadrotor helicopter flight dynamics and control: theory and experiment. Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, South Carolina, USA.
  • [23] Huo, X., Huo, M. and Karimi, H. R. 2014: Attitude stabilization control of a quadrotor UAV by using backstepping approach. Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2014, 1-9.
  • [24] Kendoul, F. 2012: A Survey of Advances in Guidance, Navigation and Control of Unmanned Rotorcraft Systems. Technical Report, Australian Research Centre for Aerospace Automation (ARCAA), Australia.
  • [25] Kıvrak, A. Ö. 2006: Design of Control Systems for a Quadrotor Flight Vehicle Equipped with Inertial Sensors. MSc Thesis, Atılım University, Turkey.
  • [26] Lee, K. U., Park, J. B. and Choi, Y. H. 2014: Adaptive backstepping hovering control for a quadrotor with unknown parameters. Journal of Institute of Control, Robotics and Systems, 20, 10, 1002-1007.
  • [27] Li, W., Zhang, T. and Kühlenz, K. 2011: A vision-guided autonomous quadrotor in an air-ground multi- robot system. Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China.
  • [28] Liu, H., Bai, Y., Lu, G., Shi, Z. and Zhong, Y. 2014: Robust tracking control of a quadrotor helicopter. Journal of Intelligent Robot Systems, 75, 595-608.
  • [29] Miller, K. 2008: Path Tracking Control for Quadrotor Helicopters. Technical Report.
  • [30] Morel, Y. and Leonessa, A. 2006: Direct adaptive tracking control of quadrotor aerial vehicles. Proceedings of the 2006 Florida Conference on Recent Advances in Robotics (FCRAR 2006), Miami, Florida, USA.
  • [31] Özkan, B. 2016: Guidance and control of a planar robot manipulator used in an assembly line. Transactions of the Institute of Measurement and Control, OnlineFirst Publication, 1-11.
  • [32] Özkan, B. 2005: Dynamic Modeling, Guidance, and Control of Homing Missiles. Ph.D Dissertation, Middle East Technical University, Ankara, Turkey.
  • [33] Richter, C., Bry, A. and Roy, N. 2013: Polynomial trajectory planning for quadrotor flight. Proceedings of the International Conference on Robotics.
  • [34] Rodriguez, H. R., Vega, V. P., Orta, A. S. and Salazar, O. G. 2014: Robust backstepping control based on integral sliding modes for tracking of quadrotors. Journal of Intelligent Robot Systems, 73, 51-66.
  • [35] Stevanovic, S., Kasac, J. and Stepanic, J. 2012: Robust tracking control of a quadrotor helicopter without velocity measurement. Proceedings of the 23rd International DAAAM Symposium, Vienna, Austria. Ozkan / Gazi Mühendislik Bilimleri Dergisi (2017), 3(2): 1-14 PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Academic Publishing 14
  • [36] Tsay, T. S. 2014: Guidance and control laws for quadrotor UAV. WSEAS Transactions on Systems and Control, 9, 1, 606-613.
  • [37] Tsay, T. S. 2012: Model based automatic regulation process for guidance and control of quadrotor UAV. Journal of Aeronautics, Astronautics, and Aviation, 46, 4, 271-279.
  • [38] Voos, H. and Nourghassemi, B. 2009: Nonlinear control of stabilized flight and landing for quadrotor UAVs. Proceedings of the 24th Annual Meeting of the European Institute for Applied Research, IAR’2009, Zielona, Góra, Poland.
  • [39] Wang, W., Ma, H., Xia, M., Weng, L. and Ye, X. 2013: Attitude and altitude controller design for quad- rotor type MAVs. Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2013, 1-9.
  • [40] Xu, R. and Özgüner, Ü. 2008: Sliding mode control of a class of underactuated systems. Automatica, Elsevier, 44, 233-241.
  • [41] Zarchan, P. 1994: Tactical and Strategic Missile Guidance. Vol. 157, Progress in Aeronautics and Astronautics, AIAA, Washington DC, USA, Chapters: 1-3.
  • [42] Zhang, D., Qi, H., Wu, X., Xie, Y. and Xu, J. 2014: The quadrotor dynamic modeling and ındoor target tracking control method. Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2014, 1-9.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Bülent Özkan Bu kişi benim

Yayımlanma Tarihi 25 Ağustos 2017
Gönderilme Tarihi 5 Eylül 2017
Kabul Tarihi 12 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 3 Sayı: 2

Kaynak Göster

IEEE B. Özkan, “Dört Döner Kanatlı Bir Sistemin Hareketli Bir Kara Platformuna Doğru Güdüm ve Denetimi”, GMBD, c. 3, sy. 2, ss. 1–14, 2017.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg