Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 29 Sayı: 1, 19 - 25, 21.03.2016

Öz

Kaynakça

  • Jong, J.K., Yu, M.Y., “Study on the Passive Film of Type 316 Stainless Steel, Int. J. of Elect. Sci”, 8: 11847-11859 (2013).
  • Wegrelius, L., Falkenberg, F. and Olefjord, I., “Passivation of Stainless Steels in Hydrochloric Acid”, J. of Elect. Soc., 146: 1397-1406 (1999).
  • Bastidas, J.M., Lopez, M.F., Gutierrez, A. and Torres, C.L., “Chemical analysis of passive films on type AISI 304 stainless steel using soft X-ray absorption spectroscopy”, Corros. Sci., 40: 431-438 (1998).
  • Bastidas, J.M., Torres, C.L., Cano, E. and Polo, J.L., “Evaluation of the protective properties of natural and artificial patinas on copper. Part I. Patinas formed by immersion”, Corros. Sci., 44: 625-633 (2002).
  • Azam, M.A., Isomura, K., Fujiwara, A. and Shimoda, T., “Towards realization of high performance vertically-aligned single-walled carbon nanotubes grown from ethanol”, Global Engineers & Technologists Rev., 1: 1-8 (2011). device using
  • Azam, M.A., Fujiwara, A. and Shimoda, T., “Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol”, Appl. Surf. Sci., 258: 873-882 (2011).
  • Llewellyn, D.T. and Hudd, R.C., “Stainless steel”, Steels, 291-379: (1998).
  • Marcus, P. and Olefjord, I., “A Round Robin on combined characterization of the passive films on Fe-Cr and Fe-Cr-Mo alloys”, Corros. Sci., 28: 589-602 (1988). and AES/ESCA
  • Pardo, A., Merino, M.C., Coy, A.E., Viejo, F., Arrabal, R. and Matykina, E. “Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4”,. Corros. Sci., 50: 780-794 (2008).
  • Pardo, A., Merino, M.C., Coy, A.E., Viejo, F., Arrabal, R. and Matykina, E., “Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions”, Corros. Sci., 50: 1796-1806 (2008).
  • Jegdic, B., Drazic, D.M. and Popic, J. P., “Open circuit potentials of metallic chromium and austenitic 304 stainless steel in aqueous sulphuric acid solution and the influence of chloride ions on them”, Corros Sci., 50: 1235-1244 (2008).
  • Turnbull, A., McCartney, L.N. and Zhou, S., “A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters”, Corros. Sci., 48: 2084-2105 (2006).
  • Kondo, Y., “Prediction of Fatigue Crack Initiation Life Based on Pit Growth”, Corrosion J, 45: 7-11 (1989).
  • Isaacs, H.S., “The localized breakdown and repair of passive surfaces during pitting”, Corros. Sci., 29: 313-23 (1989).
  • Macdonald, D.D., “The Point Defect Model for the
  • Passive State”, J. of Elect. Soc., 139(12): 3434- 3449 (1992).
  • Burstein, G.T., Liu, C., Souto, R. M. and Vines, S. P., “Origins of pitting corrosion. Corrosion Engineering”, Science and Tech., 39(1): 25-30 (2004).
  • Djoudjou, R., Lemaitre, C. and Beranger, G., “Role of sulphide inclusions on the pitting of stainless steels in chloride media”, Corrosion Reviews, XI(3/4): 157-176 (1993).
  • Burstein, G.T., Pistorius, P. C., Mattin, S. P., “The nucleation and growth of corrosion pits on stainless steel”, Corros. Sci., 35(1-4): 57-62 (1993).
  • Pistorius, P.C., Burstein, G. T., “Detailed Investigation of Current Transients from Metastable Pitting Events on Stainless Steel - The Transition to Stability”, Mats. Sci. Forum, 111-112: 429-452 (1992).
  • Isaacs, H.S., Newman, R.C., Chemistry within Pits, Crevices and Cracks edited by A. Turnbull, London, 45 (1987).
  • Isaacs, H.S., “The localized breakdown and repair of passive surfaces during pitting”, Corros. Sci., 29: 313-323 (1989).
  • Pistorius, P.C. and, Burstein, G. T., “Detailed Investigation of Current Transients from Metastable Pitting Events on Stainless Stee”, Phil. Trans. of the Royal Soc., .341:531-559 (1992).
  • G. T. Burstein, S. P. Mattin: Philosophical Magazine Letters, 66, 127-131, (1997).
  • Srhiri, A., Etman, M., Dabosi, F., “Electro and physicochemical study of corrosion inhibition of carbon steel in 3% nacl by alkylimidazoles”, Electrochimica Acta, 41: 429-437 (1996).
  • Ita, B.I. and Offiong, O.E., “Organic sulphur- containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure”, Materials Chemistry and Physics, 48: 164 -169 (1997).
  • Bouayed, M., Raba, H., Srhiri, A., Saillard, J.Y., Bachir, A.B. and Beuze, A.L., “Experimental and theoretical study of organic corrosion inhibitors on iron in acidic medium”, Corros. Sci., 41: 501-517 (1998).
  • Fonsati, M., Zucchi, F. and Trabanelli, G., “Study of corrosion inhibition of copper in 0.1 M NaCl using the EQCM technique”, Electrochimica Acta, 44: 311-322 (1998).
  • Hazelwood, L.A., Daran, J., Van Maris, A. J. A., Pronk, J. T., Dickinson, J. R. and Richard, J., “The ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces Cerevisiae metabolism”, Appl. & Environ. Microb., 74(8): 2259-2266 (2008).
  • Mellan, I., Industrial Solvents, 482 (1950).
  • Doolittle, A.K., The Technology of Solvents and Plasticizers, 644 (1954).
  • Butanols, four isomers, Environmental Health Criteria monograph, 65 (1987). [32] Monich, J.A., Alcohols, Their Chemistry, Properties and Manufacture, New York, Chapman and Reinhold, (1968).
  • Amundsen, J., Goodwin, R. J., Wetzel, W. H., Water-soluble Tetrachlorophenol Wood-Treating Systems, (1979). and
  • Ajit, K.M. and R. Balasubramaniam, R., “Corrosion inhibition of aluminium by rare earth chlorides”, Mats. Chem. & Phys., 103(2-3): 385-393 (2007).
  • Aramaki, K., “The inhibition effects of cation inhibitors on corrosion of zinc in aerated 0.5 M NaCl”, Corros. Sci., 43: 1573-1588 (2001).
  • Bethencourt, M., Botana, F. J., Calvino, J. J., Marcos, M. and Rodríguez-chacón, M. A., Corro. Sci., 40(11): 1803-1819 (1998).
  • Bethencourt, M., Botana, F. J., Cauqui, M. A., Marcos, M., Rodríguez, M.A. and Rodríguez- izquierdo, .J. M., “Protection against corrosion in marine environments of AA5083 Al–Mg alloy by lanthanide chlorides”, J. of Alloys and Compds., 250(1-2): 455 - 460 (1997).
  • Lihua, Z., Wei, Z., Yiming, J., Bo, D., Daoming, S., Jin, L., “Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101”, Electrochimica Acta, 54(23): 5387-5392 (2009).
  • Popov, Yu.A., “Theory of pit nucleation. II. Interaction between pits at the early stage of development. The role of solvent”, Prot. of Mets., 44(2): 126-133 (2008).
  • Strehblow, H.H., “Nucleation and Repassivation of Corrosion Pits for Pitting on Iron and Nickel”, Mats. & Corr., 27(11):792-799 (1976). [41] Suter, T., H. Boehni, microelectrochemical method to study pit initiation on stainless steels”, Electrochim. Acta, 42: 3275- 3280 (1997). H., “A new
  • Riley, A. M., Wells, D. B., Williams, D. E., “Initiation events for pitting corrosion of stainless steel”, Corros. Sci., 32: 1307-1313 (1991).
  • Williams, D. E., Newman, R. C., Song, Q., Kelly, R. G., “Passivity breakdown and pitting corrosion of binary alloys”, Nature, 350: 216-219 (1991)
  • Burstein, G. T., Mattain, S. P., “in Critical Factors in Localized Corrosion II”, P.M. Natishan, R. G Kelly, G. S. Frankel, and R. C, Newman, Editors, PBV 95-15, The Electrochem. Soci. Pro. Series, Pennington NJ, USA, 1996, p.1
  • Lin, L.F., Chao, C. Y., Macdonald, D. D., A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J. Electrochem. Soc., 128: 1194-1198 (1982).
  • Kobayashi, Y., Virtanen, Microelectrochemical studies on the influence of Cr and Mo on nucleation events of pitting corrosion J. Electrochem. Soc., 147(1): 155-159 (2000) H.,

Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304)

Yıl 2016, Cilt: 29 Sayı: 1, 19 - 25, 21.03.2016

Öz

The performance of Butan-1-ol (BTU) on the pitting corrosion inhibition of austenitic stainless steel (Type 304) in dilute sulphuric acid contaminated with recrystallized sodium chloride was investigated with the aid of potentiodynamic polarization technique. Corrosion potential, pitting potential, passivation potential, nucleation resistance, passivation range, passivation capacity measurements and potentiodynamic analysis were used to assess the pitting resistance characteristics of the stainless steel. Results showed that pitting potential increased progressively with proportionate increase in BTU concentration. This occurred with corresponding increase in the passivation range which shows an enhanced resistance to pitting corrosion.

Kaynakça

  • Jong, J.K., Yu, M.Y., “Study on the Passive Film of Type 316 Stainless Steel, Int. J. of Elect. Sci”, 8: 11847-11859 (2013).
  • Wegrelius, L., Falkenberg, F. and Olefjord, I., “Passivation of Stainless Steels in Hydrochloric Acid”, J. of Elect. Soc., 146: 1397-1406 (1999).
  • Bastidas, J.M., Lopez, M.F., Gutierrez, A. and Torres, C.L., “Chemical analysis of passive films on type AISI 304 stainless steel using soft X-ray absorption spectroscopy”, Corros. Sci., 40: 431-438 (1998).
  • Bastidas, J.M., Torres, C.L., Cano, E. and Polo, J.L., “Evaluation of the protective properties of natural and artificial patinas on copper. Part I. Patinas formed by immersion”, Corros. Sci., 44: 625-633 (2002).
  • Azam, M.A., Isomura, K., Fujiwara, A. and Shimoda, T., “Towards realization of high performance vertically-aligned single-walled carbon nanotubes grown from ethanol”, Global Engineers & Technologists Rev., 1: 1-8 (2011). device using
  • Azam, M.A., Fujiwara, A. and Shimoda, T., “Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol”, Appl. Surf. Sci., 258: 873-882 (2011).
  • Llewellyn, D.T. and Hudd, R.C., “Stainless steel”, Steels, 291-379: (1998).
  • Marcus, P. and Olefjord, I., “A Round Robin on combined characterization of the passive films on Fe-Cr and Fe-Cr-Mo alloys”, Corros. Sci., 28: 589-602 (1988). and AES/ESCA
  • Pardo, A., Merino, M.C., Coy, A.E., Viejo, F., Arrabal, R. and Matykina, E. “Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4”,. Corros. Sci., 50: 780-794 (2008).
  • Pardo, A., Merino, M.C., Coy, A.E., Viejo, F., Arrabal, R. and Matykina, E., “Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions”, Corros. Sci., 50: 1796-1806 (2008).
  • Jegdic, B., Drazic, D.M. and Popic, J. P., “Open circuit potentials of metallic chromium and austenitic 304 stainless steel in aqueous sulphuric acid solution and the influence of chloride ions on them”, Corros Sci., 50: 1235-1244 (2008).
  • Turnbull, A., McCartney, L.N. and Zhou, S., “A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters”, Corros. Sci., 48: 2084-2105 (2006).
  • Kondo, Y., “Prediction of Fatigue Crack Initiation Life Based on Pit Growth”, Corrosion J, 45: 7-11 (1989).
  • Isaacs, H.S., “The localized breakdown and repair of passive surfaces during pitting”, Corros. Sci., 29: 313-23 (1989).
  • Macdonald, D.D., “The Point Defect Model for the
  • Passive State”, J. of Elect. Soc., 139(12): 3434- 3449 (1992).
  • Burstein, G.T., Liu, C., Souto, R. M. and Vines, S. P., “Origins of pitting corrosion. Corrosion Engineering”, Science and Tech., 39(1): 25-30 (2004).
  • Djoudjou, R., Lemaitre, C. and Beranger, G., “Role of sulphide inclusions on the pitting of stainless steels in chloride media”, Corrosion Reviews, XI(3/4): 157-176 (1993).
  • Burstein, G.T., Pistorius, P. C., Mattin, S. P., “The nucleation and growth of corrosion pits on stainless steel”, Corros. Sci., 35(1-4): 57-62 (1993).
  • Pistorius, P.C., Burstein, G. T., “Detailed Investigation of Current Transients from Metastable Pitting Events on Stainless Steel - The Transition to Stability”, Mats. Sci. Forum, 111-112: 429-452 (1992).
  • Isaacs, H.S., Newman, R.C., Chemistry within Pits, Crevices and Cracks edited by A. Turnbull, London, 45 (1987).
  • Isaacs, H.S., “The localized breakdown and repair of passive surfaces during pitting”, Corros. Sci., 29: 313-323 (1989).
  • Pistorius, P.C. and, Burstein, G. T., “Detailed Investigation of Current Transients from Metastable Pitting Events on Stainless Stee”, Phil. Trans. of the Royal Soc., .341:531-559 (1992).
  • G. T. Burstein, S. P. Mattin: Philosophical Magazine Letters, 66, 127-131, (1997).
  • Srhiri, A., Etman, M., Dabosi, F., “Electro and physicochemical study of corrosion inhibition of carbon steel in 3% nacl by alkylimidazoles”, Electrochimica Acta, 41: 429-437 (1996).
  • Ita, B.I. and Offiong, O.E., “Organic sulphur- containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure”, Materials Chemistry and Physics, 48: 164 -169 (1997).
  • Bouayed, M., Raba, H., Srhiri, A., Saillard, J.Y., Bachir, A.B. and Beuze, A.L., “Experimental and theoretical study of organic corrosion inhibitors on iron in acidic medium”, Corros. Sci., 41: 501-517 (1998).
  • Fonsati, M., Zucchi, F. and Trabanelli, G., “Study of corrosion inhibition of copper in 0.1 M NaCl using the EQCM technique”, Electrochimica Acta, 44: 311-322 (1998).
  • Hazelwood, L.A., Daran, J., Van Maris, A. J. A., Pronk, J. T., Dickinson, J. R. and Richard, J., “The ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces Cerevisiae metabolism”, Appl. & Environ. Microb., 74(8): 2259-2266 (2008).
  • Mellan, I., Industrial Solvents, 482 (1950).
  • Doolittle, A.K., The Technology of Solvents and Plasticizers, 644 (1954).
  • Butanols, four isomers, Environmental Health Criteria monograph, 65 (1987). [32] Monich, J.A., Alcohols, Their Chemistry, Properties and Manufacture, New York, Chapman and Reinhold, (1968).
  • Amundsen, J., Goodwin, R. J., Wetzel, W. H., Water-soluble Tetrachlorophenol Wood-Treating Systems, (1979). and
  • Ajit, K.M. and R. Balasubramaniam, R., “Corrosion inhibition of aluminium by rare earth chlorides”, Mats. Chem. & Phys., 103(2-3): 385-393 (2007).
  • Aramaki, K., “The inhibition effects of cation inhibitors on corrosion of zinc in aerated 0.5 M NaCl”, Corros. Sci., 43: 1573-1588 (2001).
  • Bethencourt, M., Botana, F. J., Calvino, J. J., Marcos, M. and Rodríguez-chacón, M. A., Corro. Sci., 40(11): 1803-1819 (1998).
  • Bethencourt, M., Botana, F. J., Cauqui, M. A., Marcos, M., Rodríguez, M.A. and Rodríguez- izquierdo, .J. M., “Protection against corrosion in marine environments of AA5083 Al–Mg alloy by lanthanide chlorides”, J. of Alloys and Compds., 250(1-2): 455 - 460 (1997).
  • Lihua, Z., Wei, Z., Yiming, J., Bo, D., Daoming, S., Jin, L., “Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101”, Electrochimica Acta, 54(23): 5387-5392 (2009).
  • Popov, Yu.A., “Theory of pit nucleation. II. Interaction between pits at the early stage of development. The role of solvent”, Prot. of Mets., 44(2): 126-133 (2008).
  • Strehblow, H.H., “Nucleation and Repassivation of Corrosion Pits for Pitting on Iron and Nickel”, Mats. & Corr., 27(11):792-799 (1976). [41] Suter, T., H. Boehni, microelectrochemical method to study pit initiation on stainless steels”, Electrochim. Acta, 42: 3275- 3280 (1997). H., “A new
  • Riley, A. M., Wells, D. B., Williams, D. E., “Initiation events for pitting corrosion of stainless steel”, Corros. Sci., 32: 1307-1313 (1991).
  • Williams, D. E., Newman, R. C., Song, Q., Kelly, R. G., “Passivity breakdown and pitting corrosion of binary alloys”, Nature, 350: 216-219 (1991)
  • Burstein, G. T., Mattain, S. P., “in Critical Factors in Localized Corrosion II”, P.M. Natishan, R. G Kelly, G. S. Frankel, and R. C, Newman, Editors, PBV 95-15, The Electrochem. Soci. Pro. Series, Pennington NJ, USA, 1996, p.1
  • Lin, L.F., Chao, C. Y., Macdonald, D. D., A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J. Electrochem. Soc., 128: 1194-1198 (1982).
  • Kobayashi, Y., Virtanen, Microelectrochemical studies on the influence of Cr and Mo on nucleation events of pitting corrosion J. Electrochem. Soc., 147(1): 155-159 (2000) H.,
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Mechanical Engineering
Yazarlar

Roland Loto

Yayımlanma Tarihi 21 Mart 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 29 Sayı: 1

Kaynak Göster

APA Loto, R. (2016). Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304). Gazi University Journal of Science, 29(1), 19-25.
AMA Loto R. Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304). Gazi University Journal of Science. Mart 2016;29(1):19-25.
Chicago Loto, Roland. “Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304)”. Gazi University Journal of Science 29, sy. 1 (Mart 2016): 19-25.
EndNote Loto R (01 Mart 2016) Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304). Gazi University Journal of Science 29 1 19–25.
IEEE R. Loto, “Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304)”, Gazi University Journal of Science, c. 29, sy. 1, ss. 19–25, 2016.
ISNAD Loto, Roland. “Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304)”. Gazi University Journal of Science 29/1 (Mart 2016), 19-25.
JAMA Loto R. Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304). Gazi University Journal of Science. 2016;29:19–25.
MLA Loto, Roland. “Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304)”. Gazi University Journal of Science, c. 29, sy. 1, 2016, ss. 19-25.
Vancouver Loto R. Inhibition Effect of Butan-1-Ol on the Pitting Corrosion of Austenitic Stainless Steel (Type 304). Gazi University Journal of Science. 2016;29(1):19-25.