Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation

Yıl 2019, Cilt: 32 Sayı: 1, 205 - 215, 01.03.2019

Öz

Heat
wheel is a kind of regenerative heat exchanger mostly used in Heating,
Ventilation and Air Conditioning (HVAC) systems for two main goals; energy
recovery from the waste heat and /or dehumidification of the air. Performance
of the heat wheel utilized merely for energy recovery has been numerically
investigated in this study. For the aim of determining the optimum rotational
speed, three different angular velocities have been used under the transient
conditions. The findings obtained from the analysis have been compared to a
validated experimental study in literature. Consequently, it has been observed
that they are in good agreement each other. 

Kaynakça

  • [10] Zhang, L. Z. and Niu, J. L., “A numerical study of laminar forced convection in sinusoidal ducts with arc lower boundaries under uniform wall temperature”, Num. Heat Trans. Part A: An Int. J. Comp. Method., 40(1): 55-72, (2010). http://dx.doi.org/10.1080/10407780117998
  • [11] Sphaier, L. A. and Worek, W. M., “The effect of axial diffusion in desiccant and enthalpy wheels”, Int. J. Heat Mass Trans., 49(7-8): 1412-1419, (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.035
  • [12] Ruivo, C. R., Costa, J. J. and Figueiredo, A. R., “Numerical study of the influence of the atmospheric pressure on the heat and mass transfer rates of desiccant wheels”, Int. J. Heat Mass Trans., 54(7-8): 1331-1339, (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.008
  • [13] Tu, R., Liu, X. H. and Jiang, Y., “Performance comparison between enthalpy recovery wheels and dehumidification wheels”, Int. J. Refri., 36(8): 2308-2322, (2013). https://doi.org/10.1016/j.ijrefrig.2013.07.014
  • [14] Wu, Z., Melnik, R. V. N. and Borup, F., “Model-based analysis and simulation of regenerative heat wheel”, Energy and Build., 38(5): 502-514, (2005). https://doi.org/10.1016/j.enbuild.2005.08.009
  • [15] Niu, J. L. and Zhang, L. Z., “Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery”, Int. Com. in Heat Mass Trans., 29(2): 255-268, (2002). https://doi.org/10.1016/S0735-1933(02)00316-0
  • [16] Enteria, N., Yoshino, H., Satake, A., Mochida, A., Takaki, R., Yoshie, R., Mitamura, T. and Baba, S., “Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel”, Exp. Ther. Fluid Sci., 34(5): 603-615, (2009). https://doi.org/10.1016/j.expthermflusci.2009.12.001 [17] Sparrow, E. M., Tong, J. C. K., Johnson, M. R. and Martin, G. P., “Heat and mass transfer characteristics of a regenerative total energy wheel”, Int. J. Heat Mass Trans., 50(7-8): 1631-1636, (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.035
  • [18] Sheng, Y., Zhang, Y., Deng, N., Fang, L., Nie, J. and Ma, L., “Experimental analysis on performance of high temperature heat pump and desiccant wheel system”, Energy and Build., 66: 505-513, (2013). https://doi.org/10.1016/j.enbuild.2013.07.058
  • [19] Ruan, W., Qu, M. and Horton, W. T., “Modeling analysis of an enthalpy recovery wheel with purge air”, Int. J. Heat Mass Trans., 55(17-18): 4665-4672, (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.025
  • [20] Zhang, L. Z. And Niu, J. L., “Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery”, App. Ther. Eng., 22(12): 1347-1367, (2002). https://doi.org/10.1016/S1359-4311(02)00050-9
  • [1] Zhang, L., Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts (First Edition), Elsevier Inc., USA, ( 2014).
  • [21] ANSYS Inc. Fluent Theory Guide. 2013. Southpointe 275 Technology Drive Canonsburg USA: 621-647.
  • [22] Yıldırım, Z. E., “A Study on Isoterm Characteristics of Adsorbent-Adsorbate Pairs Used in Adsorption Heat Pumps.” MSc. Thesis, İzmir Technology Institute, İzmir, (2011).
  • [2] Ge, T. S., Li, Y., Wang, R. Z. and Dai Y. J., “A review of the mathematical models for predicting rotary desiccant wheels”, Renew. Sust. Energy Rev., 12(6): 1485-1528, (2008). https://doi.org/10.1016/j.rser.2007.01.012
  • [3] Lee, D. and Kim, D., “Analytical modelling of desiccant wheel”, Int. J. Refri., 42: 97-111, (2014). https://doi.org/10.1016/j.ijrefrig.2014.02.003
  • [4] Solmuş, İ., Dees, R. A. S., Yamalı, C. and Baker, D., “A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair”, Int. J. Heat Mass Trans.,55(19-20): 5275-5288, (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.036
  • [5] Simonson, C. J. and Besant, R. W., “Energy wheel effectiveness: part i-development of dimensionless groups”, Int. J. Heat Mass Trans., 42(12): 2161-2170, (1998). https://doi.org/10.1016/S0017-9310(98)00325-1
  • [6] Simonson, C. J. and Besant, R. W., “Energy Wheel effectiveness: part ii-correlations.” Int. J. Heat Mass Trans., 42: 2171-2185, (1998). https://doi.org/10.1016/S0017-9310(98)00327-5
  • [7] Nobrega, C. E. L. and Brum, N. C. L., “Modeling and simulation of heat and enthalpy recovery wheels”, Energy, 34(12): 2063-2068, (2008). https://doi.org/10.1016/j.energy.2008.08.016
  • [8] Zhang, L. Z., Fu, H. X., Yang, Q. R. and Xu, J. C., “Performance comparisons of honeycomb-type adsorbent beds (wheels) for air dehumidification with various desiccant wall materials”, Energy, 65: 430-440, (2013). https://doi.org/10.1016/j.energy.2013.11.042
  • [9] Goldsworthy, M. J. and White, S., “Design and performance of an internal heat exchange desiccant wheel”, Int. J. Refri., 39: 152-159, (2013). https://doi.org/10.1016/j.ijrefrig.2013.10.009
Yıl 2019, Cilt: 32 Sayı: 1, 205 - 215, 01.03.2019

Öz

Kaynakça

  • [10] Zhang, L. Z. and Niu, J. L., “A numerical study of laminar forced convection in sinusoidal ducts with arc lower boundaries under uniform wall temperature”, Num. Heat Trans. Part A: An Int. J. Comp. Method., 40(1): 55-72, (2010). http://dx.doi.org/10.1080/10407780117998
  • [11] Sphaier, L. A. and Worek, W. M., “The effect of axial diffusion in desiccant and enthalpy wheels”, Int. J. Heat Mass Trans., 49(7-8): 1412-1419, (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.035
  • [12] Ruivo, C. R., Costa, J. J. and Figueiredo, A. R., “Numerical study of the influence of the atmospheric pressure on the heat and mass transfer rates of desiccant wheels”, Int. J. Heat Mass Trans., 54(7-8): 1331-1339, (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.008
  • [13] Tu, R., Liu, X. H. and Jiang, Y., “Performance comparison between enthalpy recovery wheels and dehumidification wheels”, Int. J. Refri., 36(8): 2308-2322, (2013). https://doi.org/10.1016/j.ijrefrig.2013.07.014
  • [14] Wu, Z., Melnik, R. V. N. and Borup, F., “Model-based analysis and simulation of regenerative heat wheel”, Energy and Build., 38(5): 502-514, (2005). https://doi.org/10.1016/j.enbuild.2005.08.009
  • [15] Niu, J. L. and Zhang, L. Z., “Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery”, Int. Com. in Heat Mass Trans., 29(2): 255-268, (2002). https://doi.org/10.1016/S0735-1933(02)00316-0
  • [16] Enteria, N., Yoshino, H., Satake, A., Mochida, A., Takaki, R., Yoshie, R., Mitamura, T. and Baba, S., “Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel”, Exp. Ther. Fluid Sci., 34(5): 603-615, (2009). https://doi.org/10.1016/j.expthermflusci.2009.12.001 [17] Sparrow, E. M., Tong, J. C. K., Johnson, M. R. and Martin, G. P., “Heat and mass transfer characteristics of a regenerative total energy wheel”, Int. J. Heat Mass Trans., 50(7-8): 1631-1636, (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.035
  • [18] Sheng, Y., Zhang, Y., Deng, N., Fang, L., Nie, J. and Ma, L., “Experimental analysis on performance of high temperature heat pump and desiccant wheel system”, Energy and Build., 66: 505-513, (2013). https://doi.org/10.1016/j.enbuild.2013.07.058
  • [19] Ruan, W., Qu, M. and Horton, W. T., “Modeling analysis of an enthalpy recovery wheel with purge air”, Int. J. Heat Mass Trans., 55(17-18): 4665-4672, (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.025
  • [20] Zhang, L. Z. And Niu, J. L., “Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery”, App. Ther. Eng., 22(12): 1347-1367, (2002). https://doi.org/10.1016/S1359-4311(02)00050-9
  • [1] Zhang, L., Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts (First Edition), Elsevier Inc., USA, ( 2014).
  • [21] ANSYS Inc. Fluent Theory Guide. 2013. Southpointe 275 Technology Drive Canonsburg USA: 621-647.
  • [22] Yıldırım, Z. E., “A Study on Isoterm Characteristics of Adsorbent-Adsorbate Pairs Used in Adsorption Heat Pumps.” MSc. Thesis, İzmir Technology Institute, İzmir, (2011).
  • [2] Ge, T. S., Li, Y., Wang, R. Z. and Dai Y. J., “A review of the mathematical models for predicting rotary desiccant wheels”, Renew. Sust. Energy Rev., 12(6): 1485-1528, (2008). https://doi.org/10.1016/j.rser.2007.01.012
  • [3] Lee, D. and Kim, D., “Analytical modelling of desiccant wheel”, Int. J. Refri., 42: 97-111, (2014). https://doi.org/10.1016/j.ijrefrig.2014.02.003
  • [4] Solmuş, İ., Dees, R. A. S., Yamalı, C. and Baker, D., “A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair”, Int. J. Heat Mass Trans.,55(19-20): 5275-5288, (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.036
  • [5] Simonson, C. J. and Besant, R. W., “Energy wheel effectiveness: part i-development of dimensionless groups”, Int. J. Heat Mass Trans., 42(12): 2161-2170, (1998). https://doi.org/10.1016/S0017-9310(98)00325-1
  • [6] Simonson, C. J. and Besant, R. W., “Energy Wheel effectiveness: part ii-correlations.” Int. J. Heat Mass Trans., 42: 2171-2185, (1998). https://doi.org/10.1016/S0017-9310(98)00327-5
  • [7] Nobrega, C. E. L. and Brum, N. C. L., “Modeling and simulation of heat and enthalpy recovery wheels”, Energy, 34(12): 2063-2068, (2008). https://doi.org/10.1016/j.energy.2008.08.016
  • [8] Zhang, L. Z., Fu, H. X., Yang, Q. R. and Xu, J. C., “Performance comparisons of honeycomb-type adsorbent beds (wheels) for air dehumidification with various desiccant wall materials”, Energy, 65: 430-440, (2013). https://doi.org/10.1016/j.energy.2013.11.042
  • [9] Goldsworthy, M. J. and White, S., “Design and performance of an internal heat exchange desiccant wheel”, Int. J. Refri., 39: 152-159, (2013). https://doi.org/10.1016/j.ijrefrig.2013.10.009
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Industrial Engineering
Yazarlar

Adnan Sozen

Erdem Cıftcı 0000-0003-2493-5962

Yayımlanma Tarihi 1 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 32 Sayı: 1

Kaynak Göster

APA Sozen, A., & Cıftcı, E. (2019). Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation. Gazi University Journal of Science, 32(1), 205-215.
AMA Sozen A, Cıftcı E. Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation. Gazi University Journal of Science. Mart 2019;32(1):205-215.
Chicago Sozen, Adnan, ve Erdem Cıftcı. “Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation”. Gazi University Journal of Science 32, sy. 1 (Mart 2019): 205-15.
EndNote Sozen A, Cıftcı E (01 Mart 2019) Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation. Gazi University Journal of Science 32 1 205–215.
IEEE A. Sozen ve E. Cıftcı, “Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation”, Gazi University Journal of Science, c. 32, sy. 1, ss. 205–215, 2019.
ISNAD Sozen, Adnan - Cıftcı, Erdem. “Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation”. Gazi University Journal of Science 32/1 (Mart 2019), 205-215.
JAMA Sozen A, Cıftcı E. Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation. Gazi University Journal of Science. 2019;32:205–215.
MLA Sozen, Adnan ve Erdem Cıftcı. “Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation”. Gazi University Journal of Science, c. 32, sy. 1, 2019, ss. 205-1.
Vancouver Sozen A, Cıftcı E. Determination of Optimum Rotational Speed of the Heat Wheel through Computational Fluid Dynamics Simulation. Gazi University Journal of Science. 2019;32(1):205-1.