BibTex RIS Kaynak Göster

SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION

Yıl 2015, Cilt: 7 Sayı: 2, 1 - 7, 01.06.2015
https://doi.org/10.24107/ijeas.251250

Öz

In order to achieve high conductivity and transmittance of transparent conducting oxide (TCO), we attempted to fabricate Mg doped TiO2 (MgxTi1-xO2) thin films and characterized them for their structural and optical properties. The MgxTi1-xO2thin films have been deposited on glass substrate by doctor's blade technique. The structure of the films were confirmed to be tetragonal and particle size were estimated to be ≈11.1 nm from XRD analysis. The Optical property study in the same range shows higher value of absorbance in comparison to the pure TiO2 film after the wavelength 425 nm. The band gap is estimated to be 1.78 eV much lower than pure TiO2 (3.2 eV). So the study shows that doping a small amount of Mg can enhance the visible light absorption in the epitaxial thin film which can be a suitable material for use in solar cell to trap the solar-radiation

Kaynakça

  • [1] Hoffmann M.R., Martin S.T., Choi W., Bahnemanns D. W., Environmental Applications of Photocatalysis. Chem. Rev, 95, 69-96, 1995.
  • [2] Fox M.A., Dulay M.T., Effect of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Chem. Rev, ,93, 341-357, 1993.
  • [3] Maira A.J., Yeung K.L., Lee C.Y., Yue P.L., Chan C.K., Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts, J. Catal, 192, 185-196, 2000.
  • [4] O'Regan B., Gratzel M., Solid state dye sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 353, 737-739, 1991.
  • [5] Emeline A.V., Kuznetsov V.N., Rybchuk V.K., Serpone N., Visible-Light-Active Titania Photocatalysts: The Case of N-Doped TiO2s—Properties and Some Fundamental Issues. International Journal of Photo energy, Article ID 258394, 2008.
  • [6] Umebayashi T., Yamaki T., Itoh H., Asai K., Band gap narrowing by sulfur doping. Appl. Phys. Lett, 81, 454, 2002.
  • [7] Borgarello E., Kiwi J., Gratzel M., Pelizzetti E., Visca V.M., Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc, 14104, 2996-3002, 1982.
  • [8] Choy K.L., Chemical vapour deposition of coatings. Prog. Mater. Sci., 48, 164, 2003.
  • [9] Krol R., Goossens A., Schoonman J., Mott‐Schottky Analysis of Nanometer‐Scale Thin‐Film Anatase TiO2, J. Electrochem. Soc., 144, 1723-1727, 1997.
  • [10] Seigel R.W., Hu E.H. and Roco M.C., WTEC panel Report on R & D Status and Trend in nanoparticales. Nanostructured Material, Nanodevices, Workshop, 1997.
  • [11] Szezuko D., Werner J., Oswald S., Behr G. Wetzing K., XPS investigation of surface segregation of doping in SnO2, Appl. Surf Sci , 179, 301, 2001.
  • [12] Cao Y., Yang W., Zhang W., Liub G., Yue P., Improved photocatalytic activity of Sn+4 doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New. J. Chem, 2 (8), 218 – 222, 2004.
  • [13] Choi W., Termin A., Hoffmann M.R., Role of Metal Ion Dopants in QuantumSized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. B, 98,13669-13679, 1994.
  • [14] Nikolay T., Larina L., Shevaleevskiyb O., Tae Ahn B. Mg-doped TiO2 for dyesensitive solar cell: An electronic structure study, Energy Environ. Sci, 4,1480-1486, 2011.
  • [15] Sin W.J., Chen S., Yang J.H., Gong X.G., Yan Y., Wei S.H.. Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction, Appl. Phys. Lett, 96, 221901-221903, 2010.
  • [16] Sreemany M., Bose A., Sen S. A study on structural, optical, electrical and microstructural properties of thin TiOx films upon thermal oxidation: Effect of substrate temperature and oxidation temperature. Physica B, 405, 85-93, 2010.
  • [17]Yang H., Zhang X., Tao Q., Tang A., Microwave-assisted sol-gel synthesis and optical property of TiO2 thin film, J. Optoelectr. Advanc. Mater., 9, 2493-2497, 2007.
  • [18] Reddy K., Manorama S., Reddy A., Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78, 239-245, 2002.
  • [19] Jain S.C., Roulston D.J., A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers. Solid-State Electron, 34, 453–465, 1991.
  • [20] Mahan G., Energy gap in Si and Ge: impurity dependence. J. Appl. Phys., 51, 2634–2646, 1980.
  • [21] Devi M., Panigrahi M.R., etal. Microstructures, optical and electrical properties of TiO2 thin films prepared by unconventional sol–gel route. J. Mater Sci: Mater Electron, 26(2), 1186-1191, 2015.
Yıl 2015, Cilt: 7 Sayı: 2, 1 - 7, 01.06.2015
https://doi.org/10.24107/ijeas.251250

Öz

Kaynakça

  • [1] Hoffmann M.R., Martin S.T., Choi W., Bahnemanns D. W., Environmental Applications of Photocatalysis. Chem. Rev, 95, 69-96, 1995.
  • [2] Fox M.A., Dulay M.T., Effect of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Chem. Rev, ,93, 341-357, 1993.
  • [3] Maira A.J., Yeung K.L., Lee C.Y., Yue P.L., Chan C.K., Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts, J. Catal, 192, 185-196, 2000.
  • [4] O'Regan B., Gratzel M., Solid state dye sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 353, 737-739, 1991.
  • [5] Emeline A.V., Kuznetsov V.N., Rybchuk V.K., Serpone N., Visible-Light-Active Titania Photocatalysts: The Case of N-Doped TiO2s—Properties and Some Fundamental Issues. International Journal of Photo energy, Article ID 258394, 2008.
  • [6] Umebayashi T., Yamaki T., Itoh H., Asai K., Band gap narrowing by sulfur doping. Appl. Phys. Lett, 81, 454, 2002.
  • [7] Borgarello E., Kiwi J., Gratzel M., Pelizzetti E., Visca V.M., Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc, 14104, 2996-3002, 1982.
  • [8] Choy K.L., Chemical vapour deposition of coatings. Prog. Mater. Sci., 48, 164, 2003.
  • [9] Krol R., Goossens A., Schoonman J., Mott‐Schottky Analysis of Nanometer‐Scale Thin‐Film Anatase TiO2, J. Electrochem. Soc., 144, 1723-1727, 1997.
  • [10] Seigel R.W., Hu E.H. and Roco M.C., WTEC panel Report on R & D Status and Trend in nanoparticales. Nanostructured Material, Nanodevices, Workshop, 1997.
  • [11] Szezuko D., Werner J., Oswald S., Behr G. Wetzing K., XPS investigation of surface segregation of doping in SnO2, Appl. Surf Sci , 179, 301, 2001.
  • [12] Cao Y., Yang W., Zhang W., Liub G., Yue P., Improved photocatalytic activity of Sn+4 doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New. J. Chem, 2 (8), 218 – 222, 2004.
  • [13] Choi W., Termin A., Hoffmann M.R., Role of Metal Ion Dopants in QuantumSized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. B, 98,13669-13679, 1994.
  • [14] Nikolay T., Larina L., Shevaleevskiyb O., Tae Ahn B. Mg-doped TiO2 for dyesensitive solar cell: An electronic structure study, Energy Environ. Sci, 4,1480-1486, 2011.
  • [15] Sin W.J., Chen S., Yang J.H., Gong X.G., Yan Y., Wei S.H.. Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction, Appl. Phys. Lett, 96, 221901-221903, 2010.
  • [16] Sreemany M., Bose A., Sen S. A study on structural, optical, electrical and microstructural properties of thin TiOx films upon thermal oxidation: Effect of substrate temperature and oxidation temperature. Physica B, 405, 85-93, 2010.
  • [17]Yang H., Zhang X., Tao Q., Tang A., Microwave-assisted sol-gel synthesis and optical property of TiO2 thin film, J. Optoelectr. Advanc. Mater., 9, 2493-2497, 2007.
  • [18] Reddy K., Manorama S., Reddy A., Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78, 239-245, 2002.
  • [19] Jain S.C., Roulston D.J., A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers. Solid-State Electron, 34, 453–465, 1991.
  • [20] Mahan G., Energy gap in Si and Ge: impurity dependence. J. Appl. Phys., 51, 2634–2646, 1980.
  • [21] Devi M., Panigrahi M.R., etal. Microstructures, optical and electrical properties of TiO2 thin films prepared by unconventional sol–gel route. J. Mater Sci: Mater Electron, 26(2), 1186-1191, 2015.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA66EC63SA
Bölüm Makaleler
Yazarlar

M. Devi Bu kişi benim

Manas R. Panigrahi Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 7 Sayı: 2

Kaynak Göster

APA Devi, M., & Panigrahi, M. R. (2015). SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION. International Journal of Engineering and Applied Sciences, 7(2), 1-7. https://doi.org/10.24107/ijeas.251250
AMA Devi M, Panigrahi MR. SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION. IJEAS. Haziran 2015;7(2):1-7. doi:10.24107/ijeas.251250
Chicago Devi, M., ve Manas R. Panigrahi. “SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION”. International Journal of Engineering and Applied Sciences 7, sy. 2 (Haziran 2015): 1-7. https://doi.org/10.24107/ijeas.251250.
EndNote Devi M, Panigrahi MR (01 Haziran 2015) SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION. International Journal of Engineering and Applied Sciences 7 2 1–7.
IEEE M. Devi ve M. R. Panigrahi, “SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION”, IJEAS, c. 7, sy. 2, ss. 1–7, 2015, doi: 10.24107/ijeas.251250.
ISNAD Devi, M. - Panigrahi, Manas R. “SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION”. International Journal of Engineering and Applied Sciences 7/2 (Haziran 2015), 1-7. https://doi.org/10.24107/ijeas.251250.
JAMA Devi M, Panigrahi MR. SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION. IJEAS. 2015;7:1–7.
MLA Devi, M. ve Manas R. Panigrahi. “SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION”. International Journal of Engineering and Applied Sciences, c. 7, sy. 2, 2015, ss. 1-7, doi:10.24107/ijeas.251250.
Vancouver Devi M, Panigrahi MR. SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION. IJEAS. 2015;7(2):1-7.

21357download