Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 5 Sayı: 2, 84 - 89, 30.06.2019

Öz

Kaynakça

  • S. A. Hasanein, H. M. Khate, S. A. A. El-Enein, and H.A. El-Sayed, “Resistance of alkali activated water-cooled slag geopolymer to sulphate attack”, Ceramics-Silikáty, vol. 55, no. 2, pp. 153–160, 2011.
  • A. Niş, ‘‘Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi’’, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 1, pp. 459-473, 2019.
  • A. E. Kurtoglu, R. Alzeebaree, O. Aljumaili, A. Nis, M. E. Gulsan, G. Humur, and A. Cevik, ‘‘Mechanical and durability properties of fly ash and slag based geopolymer concrete’’, Advances in Concrete Construction, vol. 6, no. 4, pp. 345–362, 2018.
  • A. Çevik, R. Alzeebaree, G. Humur, A. Niş, and M. E. Gülşan, ‘‘Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete’’, Ceramics International, vol. 44, no. 11, pp. 12253-12264, 2018.
  • R. Alzeebaree, M.E Gulsan, A. Nis, A. Mohammedameen, and A. Cevik, ‘‘Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks’’, Steel and Composite Structures, vol. 29, no. 2, pp. 201-218, 2018.
  • R. Alzeebaree, A. Çevik, B. Nematollahi, J. Sanjayan, A. Mohammedameen, and M.E. Gülşan, ‘‘Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid’’, Construction and Building Materials, vol. 215, pp. 1015-1032, 2019.
  • M. E. Gülşan, R. Alzeebaree, A. A. Rasheed, A. Niş, and A.E. Kurtoğlu, ‘‘Development of fly ash/slag based selfcompacting geopolymer concrete using nano-silica and steel fiber’’, Construction and Building Materials, vol. 211, pp. 271-283, 2019.
  • F. N. Okoye, S. Prakash, and N. B. Singh, ‘‘Durability of fly ash based geopolymer concrete in the presence of silica fume’’, Journal of Cleaner Production, vol. 149, pp. 1062- 1067, 2017.
  • J. Davidovits, Geopolymer Chemistry and Applications, 2nd Edn., Inst. Geopolymer, SaintQuentin, France, 2008.
  • J. Davidovits, ‘‘Geopolymer cement to minimize carbon-dioxde greenhouse-warming’’, Ceram. Trans., vol. 37, pp. 165–182, 1993.
  • S. Saha and C. Rajasekaran, ‘‘Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag’’, Construction and Building Materials, vol. 146, pp. 615-620, 2017.
  • A. Fernández-Jiménez, J. G. Palomo, and F. Puertas, ‘‘Alkali-activated slag mortars: mechanical strength behaviour’’, Cement and Concrete Research, vol. 29, no. 8, pp. 1313-1321, 1999.
  • K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, and P. Chindaprasirt, ‘‘NaOH-activated ground fly ash geopolymer cured at ambient temperature’’, Fuel, vol. 90, no. 6, pp. 2118-2124, 2011.
  • T. Bakharev, ‘‘Durability of geopolymer materials in sodium and magnesium sulfate solutions’’, Cement and Concrete Research, vol. 35, no.6, 1233-1246, 2005.
  • C. B. Cheah, M. H. Samsudin, M. Ramli, W.K. Part, and L.E. Tan, L. E. ‘‘The use of high calcium wood ash in the preparation of Ground Granulated Blast Furnace Slag and Pulverized Fly Ash geopolymers: A complete microstructural and mechanical characterization’’, Journal of Cleaner Production, vol. 156, pp. 114-123, 2017.
  • N. K. Lee, J. G. Jang, and H.K. Lee, ‘‘Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages’’, Cement and Concrete Composites, vol. 53, pp. 239-248, 2014.
  • M. Hu, X. Zhu, and F. Long, ‘‘Alkali-activated fly ashbased geopolymers with zeolite or bentonite as additives’’, Cement and Concrete Composites, vol. 31, no. 10, pp. 762-768, 2009.
  • G. Görhan, and G. Kürklü, ‘‘The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures’’, Composites part b: engineering, vol. 58, pp. 371-377, 2014.
  • P. Duxson, , J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. Van Deventer, ‘‘Understanding the relationship between geopolymer composition, microstructure and mechanical properties’’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 269, no. 1-3, pp. 47-58, 2005.
  • G.B. Singh, and K. V. Subramaniam, ‘‘Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash’’, Cement and Concrete Composites, vol. 81, pp. 122-132, 2017.
  • M. Albitar, M. M. Ali, P. Visintin, and M. Drechsler, ‘‘Durability evaluation of geopolymer and conventional concretes’’, Construction and Building Materials, vol. 136, pp. 374-385, 2017.
  • M. Soutsos, A. P. Boyle, R. Vinai, A. Hadjierakleous, and S. J. Barnett, ‘‘Factors influencing the compressive strength of fly ash based geopolymers’’, Construction and Building Materials, vol. 110, pp. 355-368, 2016.

The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios

Yıl 2019, Cilt: 5 Sayı: 2, 84 - 89, 30.06.2019

Öz

Recently, geopolymer or
alkali-activated concrete takes great attention due to low carbon footprint
since fly ash and ground granulated blast furnace slag (industrial by-product
materials) has been utilized as binder materials in the alkali-activated
concrete. In this research, the compressive strength (CS) development of the
alkali-activated fly ash/slag (AAFAS) concrete was investigated in an ambient
environment at 7., 14., 28., and 56. days using alkali activator (sodium
silicate to sodium hydroxide) ratios of 1, 1.5, 2, and 2.5 with 6M SH (low)
concentration. In addition, the effect of delayed oven-curing condition was
also studied at 56.day. The results indicated that
for the
ambient-cured specimens with 6M SH concentration, the maximum and minimum CS
were reached in the AAFSS concrete with alkali activator (SS/SH) ratios of 2
and 1, respectively. The AAFAS concrete with an alkali activator ratio of 2.5
showed the lowest CS enhancement after 7.day and 14.day, while the AAFAS
specimens with an alkali activator ratio of 1.5 performed the least CS
improvement at 28.day in the ambient environment. Meanwhile, the highest CS
enhancement was observed in the specimens with an alkali activator ratio of 2
for all ages. Due to the delayed oven-curing,
the
least and the highest CS enhancements were observed in the AAFAS specimens with
alkali activator ratios of 2 and 1.5, respectively. The results pointed out
that AAFAS concrete with a higher alkali activator ratio (≥2) should be used
for structural applications in the ambient environment.

Kaynakça

  • S. A. Hasanein, H. M. Khate, S. A. A. El-Enein, and H.A. El-Sayed, “Resistance of alkali activated water-cooled slag geopolymer to sulphate attack”, Ceramics-Silikáty, vol. 55, no. 2, pp. 153–160, 2011.
  • A. Niş, ‘‘Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi’’, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 1, pp. 459-473, 2019.
  • A. E. Kurtoglu, R. Alzeebaree, O. Aljumaili, A. Nis, M. E. Gulsan, G. Humur, and A. Cevik, ‘‘Mechanical and durability properties of fly ash and slag based geopolymer concrete’’, Advances in Concrete Construction, vol. 6, no. 4, pp. 345–362, 2018.
  • A. Çevik, R. Alzeebaree, G. Humur, A. Niş, and M. E. Gülşan, ‘‘Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete’’, Ceramics International, vol. 44, no. 11, pp. 12253-12264, 2018.
  • R. Alzeebaree, M.E Gulsan, A. Nis, A. Mohammedameen, and A. Cevik, ‘‘Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks’’, Steel and Composite Structures, vol. 29, no. 2, pp. 201-218, 2018.
  • R. Alzeebaree, A. Çevik, B. Nematollahi, J. Sanjayan, A. Mohammedameen, and M.E. Gülşan, ‘‘Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid’’, Construction and Building Materials, vol. 215, pp. 1015-1032, 2019.
  • M. E. Gülşan, R. Alzeebaree, A. A. Rasheed, A. Niş, and A.E. Kurtoğlu, ‘‘Development of fly ash/slag based selfcompacting geopolymer concrete using nano-silica and steel fiber’’, Construction and Building Materials, vol. 211, pp. 271-283, 2019.
  • F. N. Okoye, S. Prakash, and N. B. Singh, ‘‘Durability of fly ash based geopolymer concrete in the presence of silica fume’’, Journal of Cleaner Production, vol. 149, pp. 1062- 1067, 2017.
  • J. Davidovits, Geopolymer Chemistry and Applications, 2nd Edn., Inst. Geopolymer, SaintQuentin, France, 2008.
  • J. Davidovits, ‘‘Geopolymer cement to minimize carbon-dioxde greenhouse-warming’’, Ceram. Trans., vol. 37, pp. 165–182, 1993.
  • S. Saha and C. Rajasekaran, ‘‘Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag’’, Construction and Building Materials, vol. 146, pp. 615-620, 2017.
  • A. Fernández-Jiménez, J. G. Palomo, and F. Puertas, ‘‘Alkali-activated slag mortars: mechanical strength behaviour’’, Cement and Concrete Research, vol. 29, no. 8, pp. 1313-1321, 1999.
  • K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, and P. Chindaprasirt, ‘‘NaOH-activated ground fly ash geopolymer cured at ambient temperature’’, Fuel, vol. 90, no. 6, pp. 2118-2124, 2011.
  • T. Bakharev, ‘‘Durability of geopolymer materials in sodium and magnesium sulfate solutions’’, Cement and Concrete Research, vol. 35, no.6, 1233-1246, 2005.
  • C. B. Cheah, M. H. Samsudin, M. Ramli, W.K. Part, and L.E. Tan, L. E. ‘‘The use of high calcium wood ash in the preparation of Ground Granulated Blast Furnace Slag and Pulverized Fly Ash geopolymers: A complete microstructural and mechanical characterization’’, Journal of Cleaner Production, vol. 156, pp. 114-123, 2017.
  • N. K. Lee, J. G. Jang, and H.K. Lee, ‘‘Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages’’, Cement and Concrete Composites, vol. 53, pp. 239-248, 2014.
  • M. Hu, X. Zhu, and F. Long, ‘‘Alkali-activated fly ashbased geopolymers with zeolite or bentonite as additives’’, Cement and Concrete Composites, vol. 31, no. 10, pp. 762-768, 2009.
  • G. Görhan, and G. Kürklü, ‘‘The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures’’, Composites part b: engineering, vol. 58, pp. 371-377, 2014.
  • P. Duxson, , J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. Van Deventer, ‘‘Understanding the relationship between geopolymer composition, microstructure and mechanical properties’’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 269, no. 1-3, pp. 47-58, 2005.
  • G.B. Singh, and K. V. Subramaniam, ‘‘Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash’’, Cement and Concrete Composites, vol. 81, pp. 122-132, 2017.
  • M. Albitar, M. M. Ali, P. Visintin, and M. Drechsler, ‘‘Durability evaluation of geopolymer and conventional concretes’’, Construction and Building Materials, vol. 136, pp. 374-385, 2017.
  • M. Soutsos, A. P. Boyle, R. Vinai, A. Hadjierakleous, and S. J. Barnett, ‘‘Factors influencing the compressive strength of fly ash based geopolymers’’, Construction and Building Materials, vol. 110, pp. 355-368, 2016.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Anıl Niş 0000-0001-9092-8088

Yayımlanma Tarihi 30 Haziran 2019
Kabul Tarihi 24 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 5 Sayı: 2

Kaynak Göster

APA Niş, A. (2019). The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios. International Journal of Engineering Technologies IJET, 5(2), 84-89.
AMA Niş A. The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios. IJET. Haziran 2019;5(2):84-89.
Chicago Niş, Anıl. “The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes With Different Alkali Activator Ratios”. International Journal of Engineering Technologies IJET 5, sy. 2 (Haziran 2019): 84-89.
EndNote Niş A (01 Haziran 2019) The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios. International Journal of Engineering Technologies IJET 5 2 84–89.
IEEE A. Niş, “The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios”, IJET, c. 5, sy. 2, ss. 84–89, 2019.
ISNAD Niş, Anıl. “The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes With Different Alkali Activator Ratios”. International Journal of Engineering Technologies IJET 5/2 (Haziran 2019), 84-89.
JAMA Niş A. The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios. IJET. 2019;5:84–89.
MLA Niş, Anıl. “The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes With Different Alkali Activator Ratios”. International Journal of Engineering Technologies IJET, c. 5, sy. 2, 2019, ss. 84-89.
Vancouver Niş A. The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios. IJET. 2019;5(2):84-9.

ijet@gelisim.edu.tr

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)