Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells

Yıl 2017, Cilt: 9 Sayı: 2, 617 - 629, 30.08.2017
https://doi.org/10.37212/jcnos.330858

Öz

Transient Receptor
Potential
(TRP) channels superfamily has mostly calcium ion (Ca2+)
permeable non-selective cation channels. Transient receptor potential
melastatin subfamily 2 (TRPM2) is widely expressed in central nervous system. Intracellular
Ca
2+ concentration ([Ca2+]i) may change depend
on TRPM2 and TRPM8 activations from extracellular liquid to cytosol. Curcumin
as natural antioxidant shows phenolic structure, synthesized by
Curcuma longa L. (Indian saffron, turmeric),
has powerful non-enzymatically antioxidant effects. Low dose curcumin treatment
can decrease calcium signaling
via
TRPM2 channel inhibition and prevent elevation of [Ca
2+]i levels.
Hence, we investigated effects of four different concentrations (5, 10, 25
and 50 µM) of curcumin on apoptosis and cell viability (MTT), reactive oxygen
species (ROS) production, mitochondrial membrane potential levels, caspase 3
and caspase 9 values in DBRG glioblastoma cells.

            We
found that curcumin reduces cell viability by concentration dependent manner.
It was also observed that curcumin induces apoptosis via caspase 3 and 9
related pathways. However, it was not found any direct relationship between the
effect of increased concentrations of curcumin and inhibition or activation of TRPM2
mediated Ca
2+ signaling in the DBTRG cells. The [Ca2+]i
concentration was lower in 5 µM group as compare to control group. Curcumin acted
important role on decrease of mitochondrial membrane potential and
intracellular ROS production in the cells. Moreover, curcumin treatment
markedly supported GSH concentration levels in the cells.
 





In conclusion, it was firstly assessed the effects of different
doses of curcumin on TRPM2 mediated calcium signaling and interaction with
various apoptosis parameters in DBTRG glioblastoma cells.

Kaynakça

  • Ak T, Gülçin I. 2008. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 174(1):27-37.
  • Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, Demiryurek AT, Camci C. 2015. Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol. 36(12):9209-13.
  • Celik O, Nazıroğlu M. 2012. Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol Behav. 10;107(3):458-65.
  • Clapham DE. 2003. TRP channels as cellular sensors. Nature. 4;426(6966):517-24.
  • Floyd RA. 1999. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med. 222(3):236-45.
  • Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. 2006. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 26(3):159-78.
  • Jayaprakasha GK, Rao, LJ, Sakariah KK. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food chemistry, 98(4), 720-724.
  • Gottlieb E, Armour SM, Harris MH, Thompson CB. 2003. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 10(6):709-17.
  • Grynkiewicz C, Poenie M, Tsien RY. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 260:3440–50.
  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y. 2002. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell. 9, 163-73.
  • Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. 2008. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 65(11):1631-52.
  • Huang TY, Tsai TH, Hsu CW, Hsu YC. 2010. Curcuminoids suppress the growth and induce apoptosis through caspase-3-dependent pathways in glioblastoma multiforme (GBM) 8401 cells. J Agric Food Chem. 13;58(19):10639-45.
  • Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A. 2006. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J. Pharmacol. Sci. 101, 66-76.
  • Karmakar S, Banik NL, Ray SK. 2007. Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells. Neurochem Res. 32(12):2103-13.
  • Kheradpezhouh E, Barritt GJ, Rychkov GY. 2016. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes. Redox Biol. 7:1-7.
  • Klaunig JE, Kamendulis LM, Hocevar BA. 2010. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 38(1):96-109.
  • Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK. 2011. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst. 4;103(9):714-36.
  • Lepannetier S, Zanou N, Yerna X, Emeriau N, Dufour I, Masquelier J, Muccioli G, Tajeddine N, Gailly P. 2016. Sphingosine-1-phosphate-activated TRPC1 channel controls chemotaxis of glioblastoma cells. Cell Calcium. 60(6):373-383.
  • Lowry OH, Rosebrough NJ, Farr Al, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1):265-75.
  • Luthra PM, Lal N. 2016. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur J Med Chem. 15;109:23-35.
  • M Khopde S, Priyadarsini KI, Venkatesan P, Rao MN. 1999. Free radical scavenging ability and antioxidant efficiency of curcumin and its substituted analogue. Biophys Chem. 9;80(2):85-91.
  • Mahalingaiah PK, Singh KP. 2014. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One. 28;9(1):e87371.
  • Nazıroğlu M, Özgül C, Küçükayaz M, Çiğ B, Hebeisen S, Bal R. 2013. Selenium modulates oxidative stress-induced TRPM2 cation channel currents in transfected Chinese hamster ovary cells. Basic Clin Pharmacol Toxicol. 112(2):96-102.
  • Nazıroğlu M. 2011. TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res. 36(3):355-66.
  • Naziroğlu M, Lückhoff A. 2008. A calcium influx pathway regulated separately by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events. Neurochem Res. 33(7):1256-62.
  • Naziroğlu M, Lückhoff A. 2008. Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci. 15;270(1-2):152-8.
  • Pariente JA, Camello C, Camello PJ, Salido GM. 2001. Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol;179:27–35.
  • Perl A, Gergely P Jr, Nagy G, Koncz A, Banki K. 2004. Mitochondrial hyperpolarization: a checkpoint of T-cell life, death and autoimmunity. Trends Immunol. 25(7):360-7.
  • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 31;411(6837):595-9.
  • Placer ZA, Cushman LL, Johnson BC. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 16(2):359-64.
  • Sedlak J, Lindsay RH. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 24;25(1):192-205.
  • Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G. 1997. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med. 7;186(1):25-37.
  • Tsunoda K, Kitange G, Anda T, Shabani HK, Kaminogo M, Shibata S, Nagata I. 2005. Expression of the constitutively activated RelA/NF-kappaB in human astrocytic tumors and the in vitro implication in the regulation of urokinase-type plasminogen activator, migration, and invasion. Brain Tumor Pathol. 22(2):79-87.
  • Uguz AC, Cig B, Espino J, Bejarano I, Naziroglu M, Rodríguez AB, Pariente JA. 2012. Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res. 53(1):91-8.
  • Uğuz AC, Nazıroğlu M, Espino J, Bejarano I, González D, Rodríguez AB et al. 2009. Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells via regulation of caspase- 3, -9 and calcium influx. J Membr Biol;232:15–23.
  • Uğuz AC, Nazıroğlu M. 2012. Effects of selenium on calcium signalling and cell apoptosis in rat dorsal root ganglion neurons induced by oxidative stress. Neurochem Res. 37:2065–75.
  • Uğuz AC, Öz A, Nazıroğlu M. 2016. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells. J Recept Signal Transduct Res. 36(4):395-401.
  • Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A. 2002. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem. 277:23150-6.
  • Wondergem R, Bartley JW. 2009. Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci. 24;16:90.
  • Zanotto-Filho A, Braganhol E, Edelweiss MI, Behr GA, Zanin R, Schröder R, Simões-Pires A, Battastini AM, Moreira JC. 2012. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem. 23(6):591-601.
  • Zhang R, Banik NL, Ray SK. 2008. Combination of all-trans retinoic acid and interferon-gamma upregulated p27(kip1) and down regulated CDK2 to cause cell cycle arrest leading to differentiation and apoptosis in human glioblastoma LN18 (PTEN-proficient) and U87MG (PTEN-deficient) cells. Cancer Chemother Pharmacol. 62(3):407-16.
Yıl 2017, Cilt: 9 Sayı: 2, 617 - 629, 30.08.2017
https://doi.org/10.37212/jcnos.330858

Öz

Kaynakça

  • Ak T, Gülçin I. 2008. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 174(1):27-37.
  • Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, Demiryurek AT, Camci C. 2015. Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol. 36(12):9209-13.
  • Celik O, Nazıroğlu M. 2012. Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol Behav. 10;107(3):458-65.
  • Clapham DE. 2003. TRP channels as cellular sensors. Nature. 4;426(6966):517-24.
  • Floyd RA. 1999. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med. 222(3):236-45.
  • Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. 2006. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 26(3):159-78.
  • Jayaprakasha GK, Rao, LJ, Sakariah KK. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food chemistry, 98(4), 720-724.
  • Gottlieb E, Armour SM, Harris MH, Thompson CB. 2003. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 10(6):709-17.
  • Grynkiewicz C, Poenie M, Tsien RY. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 260:3440–50.
  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y. 2002. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell. 9, 163-73.
  • Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. 2008. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 65(11):1631-52.
  • Huang TY, Tsai TH, Hsu CW, Hsu YC. 2010. Curcuminoids suppress the growth and induce apoptosis through caspase-3-dependent pathways in glioblastoma multiforme (GBM) 8401 cells. J Agric Food Chem. 13;58(19):10639-45.
  • Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A. 2006. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J. Pharmacol. Sci. 101, 66-76.
  • Karmakar S, Banik NL, Ray SK. 2007. Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells. Neurochem Res. 32(12):2103-13.
  • Kheradpezhouh E, Barritt GJ, Rychkov GY. 2016. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes. Redox Biol. 7:1-7.
  • Klaunig JE, Kamendulis LM, Hocevar BA. 2010. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 38(1):96-109.
  • Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK. 2011. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst. 4;103(9):714-36.
  • Lepannetier S, Zanou N, Yerna X, Emeriau N, Dufour I, Masquelier J, Muccioli G, Tajeddine N, Gailly P. 2016. Sphingosine-1-phosphate-activated TRPC1 channel controls chemotaxis of glioblastoma cells. Cell Calcium. 60(6):373-383.
  • Lowry OH, Rosebrough NJ, Farr Al, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1):265-75.
  • Luthra PM, Lal N. 2016. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur J Med Chem. 15;109:23-35.
  • M Khopde S, Priyadarsini KI, Venkatesan P, Rao MN. 1999. Free radical scavenging ability and antioxidant efficiency of curcumin and its substituted analogue. Biophys Chem. 9;80(2):85-91.
  • Mahalingaiah PK, Singh KP. 2014. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One. 28;9(1):e87371.
  • Nazıroğlu M, Özgül C, Küçükayaz M, Çiğ B, Hebeisen S, Bal R. 2013. Selenium modulates oxidative stress-induced TRPM2 cation channel currents in transfected Chinese hamster ovary cells. Basic Clin Pharmacol Toxicol. 112(2):96-102.
  • Nazıroğlu M. 2011. TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res. 36(3):355-66.
  • Naziroğlu M, Lückhoff A. 2008. A calcium influx pathway regulated separately by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events. Neurochem Res. 33(7):1256-62.
  • Naziroğlu M, Lückhoff A. 2008. Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci. 15;270(1-2):152-8.
  • Pariente JA, Camello C, Camello PJ, Salido GM. 2001. Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol;179:27–35.
  • Perl A, Gergely P Jr, Nagy G, Koncz A, Banki K. 2004. Mitochondrial hyperpolarization: a checkpoint of T-cell life, death and autoimmunity. Trends Immunol. 25(7):360-7.
  • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 31;411(6837):595-9.
  • Placer ZA, Cushman LL, Johnson BC. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 16(2):359-64.
  • Sedlak J, Lindsay RH. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 24;25(1):192-205.
  • Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G. 1997. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med. 7;186(1):25-37.
  • Tsunoda K, Kitange G, Anda T, Shabani HK, Kaminogo M, Shibata S, Nagata I. 2005. Expression of the constitutively activated RelA/NF-kappaB in human astrocytic tumors and the in vitro implication in the regulation of urokinase-type plasminogen activator, migration, and invasion. Brain Tumor Pathol. 22(2):79-87.
  • Uguz AC, Cig B, Espino J, Bejarano I, Naziroglu M, Rodríguez AB, Pariente JA. 2012. Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res. 53(1):91-8.
  • Uğuz AC, Nazıroğlu M, Espino J, Bejarano I, González D, Rodríguez AB et al. 2009. Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells via regulation of caspase- 3, -9 and calcium influx. J Membr Biol;232:15–23.
  • Uğuz AC, Nazıroğlu M. 2012. Effects of selenium on calcium signalling and cell apoptosis in rat dorsal root ganglion neurons induced by oxidative stress. Neurochem Res. 37:2065–75.
  • Uğuz AC, Öz A, Nazıroğlu M. 2016. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells. J Recept Signal Transduct Res. 36(4):395-401.
  • Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A. 2002. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem. 277:23150-6.
  • Wondergem R, Bartley JW. 2009. Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci. 24;16:90.
  • Zanotto-Filho A, Braganhol E, Edelweiss MI, Behr GA, Zanin R, Schröder R, Simões-Pires A, Battastini AM, Moreira JC. 2012. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem. 23(6):591-601.
  • Zhang R, Banik NL, Ray SK. 2008. Combination of all-trans retinoic acid and interferon-gamma upregulated p27(kip1) and down regulated CDK2 to cause cell cycle arrest leading to differentiation and apoptosis in human glioblastoma LN18 (PTEN-proficient) and U87MG (PTEN-deficient) cells. Cancer Chemother Pharmacol. 62(3):407-16.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Bölüm Original Articles
Yazarlar

Ahmi Öz

Ömer Çelik

İshak Suat Övey

Yayımlanma Tarihi 30 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 9 Sayı: 2

Kaynak Göster

APA Öz, A., Çelik, Ö., & Övey, İ. S. (2017). Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells. Journal of Cellular Neuroscience and Oxidative Stress, 9(2), 617-629. https://doi.org/10.37212/jcnos.330858
AMA Öz A, Çelik Ö, Övey İS. Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells. J Cell Neurosci Oxid Stress. Ağustos 2017;9(2):617-629. doi:10.37212/jcnos.330858
Chicago Öz, Ahmi, Ömer Çelik, ve İshak Suat Övey. “Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells”. Journal of Cellular Neuroscience and Oxidative Stress 9, sy. 2 (Ağustos 2017): 617-29. https://doi.org/10.37212/jcnos.330858.
EndNote Öz A, Çelik Ö, Övey İS (01 Ağustos 2017) Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells. Journal of Cellular Neuroscience and Oxidative Stress 9 2 617–629.
IEEE A. Öz, Ö. Çelik, ve İ. S. Övey, “Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells”, J Cell Neurosci Oxid Stress, c. 9, sy. 2, ss. 617–629, 2017, doi: 10.37212/jcnos.330858.
ISNAD Öz, Ahmi vd. “Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells”. Journal of Cellular Neuroscience and Oxidative Stress 9/2 (Ağustos 2017), 617-629. https://doi.org/10.37212/jcnos.330858.
JAMA Öz A, Çelik Ö, Övey İS. Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells. J Cell Neurosci Oxid Stress. 2017;9:617–629.
MLA Öz, Ahmi vd. “Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells”. Journal of Cellular Neuroscience and Oxidative Stress, c. 9, sy. 2, 2017, ss. 617-29, doi:10.37212/jcnos.330858.
Vancouver Öz A, Çelik Ö, Övey İS. Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells. J Cell Neurosci Oxid Stress. 2017;9(2):617-29.

Cited By